The search functionality is under construction.

Keyword Search Result

[Keyword] center-feed(4hit)

1-4hit
  • A Center-Feed Linear Array of Reflection-Canceling Slot Pairs on Post-Wall Waveguide

    Jae-Ho LEE  Jiro HIROKAWA  Makoto ANDO  

     
    LETTER-Antennas and Propagation

      Vol:
    E94-B No:1
      Page(s):
    326-329

    Post-wall waveguide with a linear array of reflection-canceling slot pairs and center-feed is designed to cancel the frequency dependent tilting of the main beam and enhance the bandwidth of the antenna boresight gain. The array is fed at the center of the waveguide from the backside; the length of the radiating waveguide is halved and the long line effect in traveling wave operation is suppressed. Authors establish the array design procedure in separate steps to reduce the computational load in the iterative optimization by using Ansoft HFSS simulator. A center-feed linear array as well as an end-feed equivalent with uniform excitation is designed for 25.6 GHz operation and measured. The measured performances confirm the design and the advantage of the centre-feed; a frequency independent boresight beam is observed and the frequency bandwidth for 3 dB gain reduction is enhanced by 1.5 times compared to the end-feed array.

  • A Post-Wall Center-Feed Waveguide Circuit Consisting of T-Junctions for Reducing the Slot-Free Area in a Parallel Plate Slot Array Antenna

    Koh HASHIMOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E93-C No:7
      Page(s):
    1047-1054

    A post-wall center-feed waveguide consisting of T-junctions is proposed for reducing the slot-free area of a parallel plate slot array antenna. The width of the slot-free area is reduced from 2.6 λ0 to 2.1 λ0. A sidelobe level in the E-plane is expected to be suppressed lower than that of the conventional center-feed antenna using cross-junctions. The method of moments with solid-wall replacement designs initially the T-junctions and HFSS including the post surfaces modifies only the reflection cancelling post. We have designed and fabricated a 61.25 GHz model antenna with uniform aperture illumination. The sidelobe level in the E-plane is suppressed to -9.5 dB while that of a conventional cross-junction type is -7.8 dB. Also, we suppress it to -13.8 dB by introducing a -8.3 dB amplitude tapered distribution in the array of the radiation slot pairs.

  • The Ridged Cross-Junction Multiple-Way Power Divider for Small Blockage and Symmetrical Slot Arrangement in the Center Feed Single-Layer Slotted Waveguide Array

    Yasuhiro TSUNEMITSU  Goro YOSHIDA  Naohisa GOTO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas

      Vol:
    E91-B No:6
      Page(s):
    1767-1772

    The center-feed in a single-layer slotted waveguide array[1]-[3] is one of the key components in polarization division duplex (PDD) wireless systems. Two center-feed arrays with orthogonal polarization and boresight beams are orthogonally arranged side-by-side for transmission and reception, simultaneously. Each antenna has extremely high XPD (almost 50 dB in measurement) and a very high isolation (over 80 dB in measurement) between two arrays is observed provided the symmetry of slot arrangement is preserved [4]. Unfortunately, the area blocked by the center feed causes high sidelobe levels. This paper proposes the ridged cross-junction multiple-way power divider for realizing blockage reduction and symmetrical slot arrangement at the same time.

  • Reflection Characteristics of Center-Feed Single-Layer Waveguide Arrays

    Yasuhiro TSUNEMITSU  SeHyun PARK  Jiro HIROKAWA  Makoto ANDO  Yohei MIURA  Yasuhiro KAZAMA  Naohisa GOTO  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2313-2319

    The reflection characteristics of large alternating-phase fed single-layer waveguide arrays with center-feeds are investigated to identify the mechanism for bandwidth narrowing effects. Firstly, the overall reflection for the whole array is analyzed by FEM and fine agreement with measurements is demonstrated. It is deviating from the conventional prediction based upon a simple sum of reflections from components in the array, such as the multiple-way power divider, the slot waveguides and the aperture at the antenna input. Careful diagnosis reveals that the mutual coupling between the alternating phase waveguides via external half-space is the key factor in reflection accumulation. Amongst all, the slot with strong excitation whose position depends upon the aperture illumination design produces the dominant contribution in the mutual coupling.