The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel code(5hit)

1-5hit
  • A Universal Affine Code for Symmetric Channels

    Tomohiko UYEMATSU  

     
    PAPER-Channel Coding

      Vol:
    E94-A No:11
      Page(s):
    2097-2104

    This paper investigates the performance of a combination of the affine encoder and the maximum mutual information decoder for symmetric channels, and proves that the random coding error exponent can be attained by this combination even if the conditional probability of the symmetric channel is not known to the encoder and decoder. This result clarifies that the restriction of the encoder to the class of affine encoders does not affect the asymptotic performance of the universal code for symmetric channels.

  • A RFID EPC C1 Gen2 System with Channel Coding Capability in AWGN Noise Environments

    Ki Yong JEON  Sung Ho CHO  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E92-B No:2
      Page(s):
    608-611

    In this letter, we propose a new scheme for the tag structure of the EPCglobal Class-1 Generation-2 (EPC C1 Gen2) standard equipped with a channel encoding block and the corresponding decoding block in the receiver of the reader system. The channel coded tag is designed to fully accommodate the EPC C1 Gen2 standard. The use of the proposed channel encoding block increases the number of logic gates in the tag by no more than 5%. The proposed reader system is designed to be used in the mixed tag modes as well, where the channel coded tags and existing tags co-exist in the same inventory round. The performances of the proposed tags and the corresponding reader systems are also presented by comparing the number of EPC error frames and the tag identification time with those of the conventional tags and reader systems.

  • Robust Space Time Code for Channel Coded MIMO Systems

    Ilmu BYUN  Hae Gwang HWANG  Young Jin SANG  Kwang Soon KIM  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:1
      Page(s):
    381-384

    Various space time code (STC) designs have been proposed to obtain full diversity at full rate in multiple-input multiple-output (MIMO) channels for uncoded systems. However, commercial wireless systems typically employ powerful channel codes such as turbo codes and low density parity check (LDPC) codes together with an STC. For these applications, an STC optimized for uncoded systems may not provide the best performance. In this paper, an STC with relatively good performance over a wide range of code rates is proposed. Simulation results show that the performance of the proposed robust STC is very close to the best performance of the SM and the Golden code in various code rates.

  • Unequal Error Protected Image Transmission and Recovery Using Trellis Coding

    Tae-Sun CHOI  Byungseog BAEK  

     
    LETTER-Communication Theory

      Vol:
    E82-B No:10
      Page(s):
    1684-1687

    A new UEP technique for image transmission using trellis code based on Hamming distance criterion has been proposed. The simulation results comparing the image quality and bit-rate for UEP and EEP have been provided. The results show that UEP performs better than EEP in terms of bit-rate without any significant depreciation in image quality.

  • Periodic Correlation Properties of FM Coded M Sequences Having DC Free Spectrum

    Shinji TSUZUKI  Shunsaku OSAKI  Saburo TAZAKI  Yoshio YAMADA  

     
    PAPER

      Vol:
    E78-A No:9
      Page(s):
    1127-1135

    The periodic correlation properties of M sequences coded by channel codes are discussed. As for the channel codes, the Manchester code and the eight DC free codes in the FM family codes, which include the conventional FM code and the differential Manchester code, are adopted. The M sequences coded by the DC free codes in the FM family codes are referred to as FM coded M sequences. The periodic correlation properties of all combinations of the FM coded M sequences are checked, and the combinations which can provide almost the same or better properties as compared with those of the preferred pairs of M sequences are described. An example of code design using the FM coded M sequences for asynchronous direct sequence/spread spectrum multiple access systems is also discussed.