The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] channel sharing(5hit)

1-5hit
  • Resource Sharing Strategy for D2D Communication Underlaying Multichannel Cellular Networks

    Yingjing QIAN  Ni ZHOU  Dajiang HE  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2016/11/21
      Vol:
    E100-B No:5
      Page(s):
    818-825

    Device-to-device (D2D) communication enables two local users to communicate with each other directly instead of relaying through a third party, e.g., base station. In this paper, we study a subchannel sharing strategy underlaying multichannel cellular network for D2D pairs and existing cellular users (CUs). In the investigated scenario, we try to improve the spectrum efficiency of D2D pairs, but inevitably brings cross interference between two user groups. To combat interference, we attempt to assign each D2D pair with appropriate subchannels, which may belong to different CUs, and manipulate transmission power of all users so as to maximize the sum rate of all D2D pairs, while assuring each CU with a minimum data rate on its subchannel set. The formulated problem is a nonconvex problem and thus, obtaining its optimal solution is a tough task. However, we can find optimal power and subchannel assignment for a special case by setting an independent data rate constraint on each subchannel. Then we find an efficient method to calculate a gradient for our original problem. Finally, we propose a gradient-based search method to address the problem with coupled minimum data rate constraint. The performance of our proposed subchannel sharing strategy is illustrated via extensive simulation results.

  • A Heuristic Traffic Load Balanced (HTLB) Channel Sharing Method for Metro-WDMA Networks

    Changho YUN  Kiseon KIM  

     
    LETTER-Fiber-Optic Transmission for Communications

      Vol:
    E91-B No:2
      Page(s):
    581-584

    A new load balanced channel sharing method (CSM), namely Heuristic Traffic Load Balanced (HTLB) CSM, is proposed for metro-wavelength division multiple access (WDMA) networks. In particular, HTLB CSM is designed to be effective for pre-allocation based medium access control (MAC) protocols by balancing traffic loads corresponding to pre-assigned destinations per time slot. As a result, HTLB CSM is shown to provide lower time complexity than the well-known sub-optimal load balanced CSM, MULTIFIT CSM. Furthermore, the Jain Index of the HTLB CSM is shown to be higher and more consistent than the MULTIFIT CSM and other pre-fixed CSMs under diverse traffic conditions.

  • Analysis of Throughput in M-WDMA MAC Protocol for WDMA Networks

    Changho YUN  Tae-Sik CHO  Kiseon KIM  

     
    LETTER-Network

      Vol:
    E90-B No:1
      Page(s):
    156-159

    Multimedia Wavelength Division Multiple Access (M-WDMA) specially designed to accommodate multimedia traffic is a well-known media access control (MAC) protocol. This paper extensively analyzes the throughput of M-WDMA. Specifically, this analysis considers a wide range of network conditions including varying traffic loads, probabilistic occupancy of time segment, various traffic distribution patterns (TDPs) and channel sharing methods (CSMs) under both symmetric and asymmetric traffic load patterns (TLPs). Thus, the analytic behavior of M-WDMA can be investigated for designing a WDMA network managing multimedia traffic under practical environments.

  • Generalized Hypercube Structure with Shared Channels for a WDM Optical Network

    Seahyeon NAM  

     
    PAPER-Fiber-Optic Transmission

      Vol:
    E83-B No:12
      Page(s):
    2585-2592

    A Generalized Hypercube Network (GHNet) with shared channels which requires only one fixed-wavelength transmitter and r(m-1) fixed-wavelength receivers per node is proposed. The proposed network topology reduces not only the number of transmitters per node but also the number of WDM channels required to service the same number of nodes compared with the GHNet with dedicated channels by sharing the available WDM channels, while it maintains the same channel efficiency as the GHNet with dedicated channels. The proposed network topology may be preferred in a situation where the number of available WDM channels and the cost of the transmitter may cause a major restriction on the lightwave network construction. For performance analysis, the network capacity and the mean queueing delay for the proposed network topology are obtained. Also, the performance measures of the proposed GHNet with shared channels are compared with those of the ShuffleNet with shared channels.

  • A WDM Channel Sharing Scheme for Multihop Lightwave Networks Using Logically Bidirectional Perfect Shuffle Interconnection Pattern

    Hong-Ki HAN  Yoon-Kyoo JHEE  

     
    PAPER-Optical Communication

      Vol:
    E77-B No:9
      Page(s):
    1152-1161

    Optical WDM (Wavelength Division Multiplexing) technology is a method of exploiting the huge bandwidth of optical fibers. Local lightwave networks which use fixed wavelength transmitters and receivers can be built in a multihop fashion. In multihop local lightwave networks, packets arrive at their destination by hopping a number of intermediate nodes. The channel sharing schemes for multihop lightwave networks have been proposed for efficient channel utilization, but those schemes result in the degradation of network capacity and the user throughput. In this paper, we propose an improved WDM channel sharing scheme using the logically bidirectional perfect shuffle interconnection pattern, achieving smaller number of average hops for transmission and better channel utilization efficiency. Better channel utilization efficiency is obtained without much deteriorating the network capacity and the user throughput. TDMA (Time Division Multiple Access) protocol can be used to control the sharing of channels, and time delay and lost packet probability analysis based on TDMA is performed.