The search functionality is under construction.

Keyword Search Result

[Keyword] closed-form equation(5hit)

1-5hit
  • Precise BER Analysis of Repetition Coded OFDM Systems over Time- and Frequency-Selective Rayleigh Fading Channels

    Fumihito SASAMORI  Satoru ASADA  Osamu TAKYU  Shiro HANDA  

     
    PAPER

      Vol:
    E98-B No:1
      Page(s):
    88-98

    Orthogonal frequency division multiplexing (OFDM) has great advantages of high spectrum efficiency and robustness against multipath fading. When the received signal is deeply suppressed by deep fading, path loss and shadowing, the received carrier power must be increased in order to avoid degrading communication quality and provide high reliability at the cost of lower system throughput. A repetition coding is very attractive in providing the high reliability with simple configuration and the low decoding complexity of maximal ratio combining. In order to analytically confirm the effectiveness of repetition coded OFDM systems, we theoretically analyze the effect of increasing the number of repetitions (diversity branches) and acquiring both time and frequency diversity gain, and then derive a closed-form equation of average bit error rate (BER) to easily but precisely evaluate the performance.

  • Performance Analysis of Hermite-Symmetric Subcarrier Coding for OFDM Systems over Fading Channels

    Fumihito SASAMORI  Shiro HANDA  

     
    PAPER-Communication Theory and Signals

      Vol:
    E95-A No:12
      Page(s):
    2461-2469

    Orthogonal frequency division multiplexing (OFDM) has great advantages such as high spectrum efficiency and robustness against multipath fading. In order to enhance the advantages, an Hermite-symmetric subcarrier coding for OFDM, which is used for transmission systems like the asymmetric digital subscriber line (ADSL) and multiband OFDM in ultra-wideband (UWB) communications, is very attractive. The subcarrier coding can force the imaginary part of the OFDM signal to be zero, then another data sequence can be simultaneously transmitted in the quadrature channel. In order to theoretically verify the effectiveness of the Hermite-symmetric subcarrier coding in wireless OFDM (HC-OFDM) systems, we derive closed-form equations for bit error rate (BER) and throughput over fading channels. Our analytical results can theoretically indicate that the HC-OFDM systems achieve the improvement of the performances owing to the effect of the subcarrier coding.

  • Performance Analysis of Repetition Coded OFDM Systems with Diversity Combining and Higher-Level Modulation

    Fumihito SASAMORI  Ziyan JIA  Shiro HANDA  Shinjiro OSHITA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:1
      Page(s):
    194-202

    Orthogonal frequency division multiplexing (OFDM) communication systems have great advantages, such as high spectrum efficiency and robustness against multipath fading. In order to enhance the advantages, this paper investigates an efficient utilization of both diversity combining and higher-level modulation (adaptive modulation) with a repetition code on the frequency domain in the OFDM systems. The repetition coded OFDM systems can achieve an improvement of performance with such a simple structure as one pair of transmit/receive antennas. In this paper, we derive simple closed-form equations for bit error probability (BEP) and throughput, and then improvements of those performances in the proposed OFDM systems are verified by both theoretical analysis and Monte Carlo simulation.

  • A Simple Expression of BER Performance in DPSK/OFDM Systems with Post-Detection Diversity Reception

    Fumihito SASAMORI  Shiro HANDA  Shinjiro OSHITA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E92-B No:5
      Page(s):
    1897-1900

    In this letter, we propose a simple but accurate calculation method, that is, an approximate closed-form equation of average bit error rate in DPSK/OFDM systems with post-detection diversity reception over both time- and frequency-selective Rayleigh fading channels. The validity of the proposed method is verified by the fact that BER performances given by the derived equation coincide with those by Monte Carlo simulation.

  • A Simple Method of BER Calculation in DPSK/OFDM Systems over Fading Channels

    Fumihito SASAMORI  Shiro HANDA  Shinjiro OSHITA  

     
    PAPER-Mobile Information Network and Personal Communications

      Vol:
    E88-A No:1
      Page(s):
    366-373

    In orthogonal frequency division multiplexing (OFDM) systems with differential phase shift keying (DPSK), it is possible to apply differential modulation either in the time or frequency domain depending on the condition of fading channels, such as the Doppler frequency shift and the delay spread. This paper proposes a simple calculation method, that is, an approximate closed-form equation of the bit error rate (BER) in DPSK/OFDM systems mentioned above over both time and frequency selective Rician fading channels. The validity of the proposed method is demonstrated by the fact that the BER performances given by the derived equation coincide with those by Monte Carlo simulation.