1-2hit |
For mobile visual communications, the development of more robust and efficient video traffic control and transmission techniques remains one of the most important issues. Foveated video originates from visual entropy reduction by removing undetectable high visual frequencies that occur at a distance from the fixation point. In this paper, compression gain is defined and measured to quantify the enhanced performance when the visual throughput of the regions of interest (ROI) is increased over a capacity-limited channel.
For point-to-point mobile visual communications, layered video has been utilized to adapt to time-varying channel capacity over noisy environments. From the perspective of the HVS (Human Visual System), it is necessary to minimize the loss of visual quality by specifically maintaining the throughput of visually important regions, objects and so on. Utilizing the prioritized bitstreams generated according to each layer, the throughput can be improved for given channel statistics. In this paper, we define the transmission gain and measure the improved performance when the throughput of ROI (Regions Of Interest) is increased relative to visually unimportant regions over a capacity limited mobile channel.