1-1hit |
Masato KAWABATA Norinobu YOSHIDA
In the spatial network method (SNM) for the vector potential, both the current continuity law including polarization vector and the conservation law of generalized momentum including vector potential field can introduce simpler expressions for dispersive property than that by the electromagnetic field variables. But for the anisotropic medium conditions, the conventional expanded node expression has some difficulties in treating the coupling mechanism among field variables. On the other hand, in the condensed node expression, in which all field components exist at each node, every connections among field components can be simply formulated. In this paper, after proposing the condensed node spatial network method for the vector potential, the advantage of the method such as performing the simplified formulation by utilization of both the vector potential and the condensed node expressions is presented for the magnetized plasma which has the gyro-anisotropy. The validity of the computation is shown by some examples such as Faraday rotation.