The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] conducting wedge(3hit)

1-3hit
  • A Discussion on Physical Optics Approximation for Edge Diffraction by A Conducting Wedge

    Duc Minh NGUYEN  Hiroshi SHIRAI  

     
    PAPER-Electromagnetic Theory

      Pubricized:
    2021/11/22
      Vol:
    E105-C No:5
      Page(s):
    176-183

    In this study, edge diffraction of an electromagnetic plane wave by two-dimensional conducting wedges has been analyzed by the physical optics (PO) method for both E and H polarizations. Non-uniform and uniform asymptotic solutions of diffracted fields have been derived. A unified edge diffraction coefficient has also been derived with four cotangent functions from the conventional angle-dependent coefficients. Numerical calculations have been made to compare the results with those by other methods, such as the exact solution and the uniform geometrical theory of diffraction (UTD). A good agreement has been observed to confirm the validity of our method.

  • Manipulation of Weber-Schafheitlin Integral for Conducting Wedge

    Huen-Tae HA  Jung-Woong RA  

     
    LETTER-Antenna and Propagation

      Vol:
    E84-B No:3
      Page(s):
    691-693

    This letter presents a new transformation technique of series solution to asymptotic solution for a perfectly conducting wedge illuminated by E-polarized plane wave. This transformation gives an analytic manipulation example of the Weber-Schafheitlin integral for diffraction problem.

  • Scattering of Electromagnetic Plane Waves by a Perfectly Conducting Wedge: The Case of E Polarization

    Michinari SHIMODA  Tokuya ITAKURA  Yuko YAMADA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E78-C No:9
      Page(s):
    1298-1305

    The two-dimensional scattering problem of electromagnetic waves by a perfectly conducting wedge is analyzed by means of the Wiener-Hopf technique together with the formulation using the partition of scatterers. The Wiener-Hopf equations are derived on two complex planes. Investigating the mapping between these complex planes and introducing the appropriate functions which satisfy the edge condition of the wedge, the solutions of these equations are obtained by the decomposition procedure of functions. By deforming the integration path of the Fourier inverse transform, it is found that the representation of the scattered wave is in agreement with the integral representation using the Sommerfeld contours.