1-1hit |
Beomjin YUK Byeongseol KIM Soohyun YOON Seungbeom CHOI Joonsung BAE
This paper presents a driver status monitoring (DSM) system with body channel communication (BCC) technology to acquire the driver's physiological condition. Specifically, a conductive thread, the receiving electrode, is sewn to the surface of the seat so that the acquired signal can be continuously detected. As a signal transmission medium, body channel characteristics using the conductive thread electrode were investigated according to the driver's pose and the material of the driver's pants. Based on this, a BCC transceiver was implemented using an analog frequency modulation (FM) scheme to minimize the additional circuitry and system cost. We analyzed the heart rate variability (HRV) from the driver's electrocardiogram (ECG) and displayed the heart rate and Root Mean Square of Successive Differences (RMSSD) values together with the ECG waveform in real-time. A prototype of the DSM system with commercial-off-the-shelf (COTS) technology was implemented and tested. We verified that the proposed approach was robust to the driver's movements, showing the feasibility and validity of the DSM with BCC technology using a conductive thread electrode.