The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] confusion network(2hit)

1-2hit
  • Error Correction Using Long Context Match for Smartphone Speech Recognition

    Yuan LIANG  Koji IWANO  Koichi SHINODA  

     
    PAPER-Speech and Hearing

      Pubricized:
    2015/07/31
      Vol:
    E98-D No:11
      Page(s):
    1932-1942

    Most error correction interfaces for speech recognition applications on smartphones require the user to first mark an error region and choose the correct word from a candidate list. We propose a simple multimodal interface to make the process more efficient. We develop Long Context Match (LCM) to get candidates that complement the conventional word confusion network (WCN). Assuming that not only the preceding words but also the succeeding words of the error region are validated by users, we use such contexts to search higher-order n-grams corpora for matching word sequences. For this purpose, we also utilize the Web text data. Furthermore, we propose a combination of LCM and WCN (“LCM + WCN”) to provide users with candidate lists that are more relevant than those yielded by WCN alone. We compare our interface with the WCN-based interface on the Corpus of Spontaneous Japanese (CSJ). Our proposed “LCM + WCN” method improved the 1-best accuracy by 23%, improved the Mean Reciprocal Rank (MRR) by 28%, and our interface reduced the user's load by 12%.

  • Improving the Readability of ASR Results for Lectures Using Multiple Hypotheses and Sentence-Level Knowledge

    Yasuhisa FUJII  Kazumasa YAMAMOTO  Seiichi NAKAGAWA  

     
    PAPER-Speech and Hearing

      Vol:
    E95-D No:4
      Page(s):
    1101-1111

    This paper presents a novel method for improving the readability of automatic speech recognition (ASR) results for classroom lectures. Because speech in a classroom is spontaneous and contains many ill-formed utterances with various disfluencies, the ASR result should be edited to improve the readability before presenting it to users, by applying some operations such as removing disfluencies, determining sentence boundaries, inserting punctuation marks and repairing dropped words. Owing to the presence of many kinds of domain-dependent words and casual styles, even state-of-the-art recognizers can only achieve a 30-50% word error rate for speech in classroom lectures. Therefore, a method for improving the readability of ASR results is needed to make it robust to recognition errors. We can use multiple hypotheses instead of the single-best hypothesis as a method to achieve a robust response to recognition errors. However, if the multiple hypotheses are represented by a lattice (or a confusion network), it is difficult to utilize sentence-level knowledge, such as chunking and dependency parsing, which are imperative for determining the discourse structure and therefore imperative for improving readability. In this paper, we propose a novel algorithm that infers clean, readable transcripts from spontaneous multiple hypotheses represented by a confusion network while integrating sentence-level knowledge. Automatic and manual evaluations showed that using multiple hypotheses and sentence-level knowledge is effective to improve the readability of ASR results, while preserving the understandability.