The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] control networks(2hit)

1-2hit
  • Periodic Model Predictive Control of Multi-Hop Control Networks

    Dai SATOH  Koichi KOBAYASHI  Yuh YAMASHITA  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    406-413

    In this paper, a new method of model predictive control (MPC) for a multi-hop control network (MHCN) is proposed. An MHCN is a control system in which plants and controllers are connected through a multi-hop wireless network. In the proposed method, (i) control inputs and (ii) paths used in transmission of control inputs are computed with constant period by solving the finite-time optimal control problem. First, a mathematical model for expressing an MHCN is proposed. This model is given by a switched linear system, and is compatible with MPC. Next, the finite-time optimal control problem using this model is formulated, and is reduced to a mixed integer quadratic programming problem. Finally, a numerical example is presented to show the effectiveness of the proposed method.

  • Implementing a Secure Autonomous Bootstrap Mechanism for Control Networks

    Nobuo OKABE  Shoichi SAKANE  Kazunori MIYAZAWA  Ken'ichi KAMADA  Masahiro ISHIYAMA  Atsushi INOUE  Hiroshi ESAKI  

     
    PAPER

      Vol:
    E89-D No:12
      Page(s):
    2822-2830

    There are many kinds of control networks, which have been used in various non-IP network areas, such as BA (Building Automation), FA (Factory Automation) and PA (Process Automation). They are now introducing IP and face the issues of security and configuration complexity. The authors have proposed a model which intends to solve these issues while satisfying restrictions, i.e. small embedded devices, isolated networks and private naming system/name space, which are required when introducing new functionality into existing control networks. Secure bootstrap sequence and device-to-device communication using the chain of trust are the points of the model. This paper shows the practicability of the model through implementing the model experimentally.