1-1hit |
Yoshimi HATSUKADE Yoshihiro KITAMURA Saburo TANAKA Keiichi TANABE Eiichi ARAI Hiroyuki KATAYAMA
Effect of an addition of a cooled step-up transformer to a flux locked loop (FLL) circuit was studied to reduce indirect rf interference to HTS-dc-SQUID. First, we demonstrated that a noise level of an HTS-dc-SQUID system using the FLL circuit with single room-temperature transformer could be easily degraded by radiation of rf electromagnetic wave to cables in the FLL circuit. It is thought that the rf radiation induced rf current in the circuit, and was transmitted to the SQUID to modulate the bias current, resulting in the increase of the noise level. To avoid the degradation due to such indirect rf interference, the cooled set-up transformer was added to the FLL circuit since it was expected that the additional transformer would work as a "step-down" transformer against the induced rf current. It was shown that the noise level of a HTS-SQUID system (SQUITEM system) operated in an electromagnetically unshielded environment could be improved to the same level as that measured in a magnetically shielded room by the additional cooled transformer and appropriate impedance matching.