1-2hit |
In this paper a high-performance copy network named PPCN is proposed for large scale ATM switching systems. The proposed copy network consists of multiple planes of the P2I Copy Networks(PCN) arranged in parallel. The PCN planes are designed based on the P2I multistage interconnection networks (MINs). A single PCN plane is itself a preliminary self-routing copy network which, however, is not a non-blocking one. A novel dispatcher is designed to dispatch input cells to the PCN planes such that no internal blocking nor output contention arises during the cell replication procedure and the offered load can be shared in an efficient way. The architecture of the PPCN provides flexibility for the maximum fanout for an input cells. In a PPCN system, the maximum fanout for an input cells is determined only by the number of interconnection stages within the PCN planes, independent of the input size of the system. The performance of the PPCN is studied under uniform traffic. It is shown that a small constant number of PCN planes are sufficient for a PPCN system to achieve an acceptable low overflow probability regardless of the system size. The hardware complexity of an N N PPCN is O(N log2 K) and the length of the routing tag is O(log2 K) bits, where K is the maximum fanout for an input cell. The storage complexity of the translation tables adopted in an N-inlet PPCN is O(N), which is much lower than that of the previously proposed ones.
Pierre U. TAGLE Neeraj K. SHARMA
Multicasting is an important feature for any switching network being intended to support broadband integrated services digital networks (B-ISDN). This paper proposes an improved multicast packet switch based on Lee's nonblocking copy network. The improved design retains the desirable features of Lee's network including its nonblocking property while adopting techniques to overcome the various limitations mentioned in various literature. The proposed network architecture utilizes d-dilated banyan networks to increase the amount of cells that can be replicated within the copy network. Cell splitting is used to optimize the utilization of the network's available bandwidth. Furthermore, the proposed architecture allows for the modular expansion in capacity to accomodate changing traffic patterns. The modular design of the proposed switch likewise offers easy handling and replacement of faulty modules.