The search functionality is under construction.

Keyword Search Result

[Keyword] cross-polarized pulse(2hit)

1-2hit
  • Polarization-Independent Wavelength Conversion Using Four-Wave Mixing in Single-Mode Fibers Pumped with Cross-Polarized High Frequency Pulses

    Kenichiro TSUJI  Hideaki YOKOTA  Masatoshi SARUWATARI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-C No:5
      Page(s):
    564-570

    This paper describes a simple polarization-independent wavelength conversion method using degenerated four-wave mixing (FWM) in single-mode fibers pumped with cross-polarized high frequency, saw-tooth pulses from a single pump source. Successful polarization-independent wavelength conversion is experimentally confirmed with less than 12% and 5.6% variation using a gain-switched LD pumping and a mode-locked fiber laser pumping, respectively. We clarify that the interference effect between two orthogonal pump pulses must be taken into account to achieve a good polarization-insensitive operation, since even the small pulse edges bring about the large polarization fluctuations when they are interfered. Furthermore, it is reveal that the shorter pump pulse broadens its own spectrum due to the self-phase modulation in fibers, resulting in poor FWM efficiency. Finally, possibility of high-speed operation is discussed taking into account the pump pulse conditions.

  • Polarization-Independent Wavelength Conversion Using Four-Wave Mixing in Single-Mode Fibers Pumped with Cross-Polarized High Frequency Pulses

    Kenichiro TSUJI  Hideaki YOKOTA  Masatoshi SARUWATARI  

     
    PAPER-Optical Systems and Technologies

      Vol:
    E84-B No:5
      Page(s):
    1190-1196

    This paper describes a simple polarization-independent wavelength conversion method using degenerated four-wave mixing (FWM) in single-mode fibers pumped with cross-polarized high frequency, saw-tooth pulses from a single pump source. Successful polarization-independent wavelength conversion is experimentally confirmed with less than 12% and 5.6% variation using a gain-switched LD pumping and a mode-locked fiber laser pumping, respectively. We clarify that the interference effect between two orthogonal pump pulses must be taken into account to achieve a good polarization-insensitive operation, since even the small pulse edges bring about the large polarization fluctuations when they are interfered. Furthermore, it is reveal that the shorter pump pulse broadens its own spectrum due to the self-phase modulation in fibers, resulting in poor FWM efficiency. Finally, possibility of high-speed operation is discussed taking into account the pump pulse conditions.