The search functionality is under construction.

Keyword Search Result

[Keyword] cross-validation(6hit)

1-6hit
  • A Two-Fold Cross-Validation Training Framework Combined with Meta-Learning for Code-Switching Speech Recognition

    Zheying HUANG  Ji XU  Qingwei ZHAO  Pengyuan ZHANG  

     
    LETTER-Speech and Hearing

      Pubricized:
    2022/06/20
      Vol:
    E105-D No:9
      Page(s):
    1639-1642

    Although end-to-end based speech recognition research for Mandarin-English code-switching has attracted increasing interests, it remains challenging due to data scarcity. Meta-learning approach is popular with low-resource modeling using high-resource data, but it does not make full use of low-resource code-switching data. Therefore we propose a two-fold cross-validation training framework combined with meta-learning approach. Experiments on the SEAME corpus demonstrate the effects of our method.

  • A Fast Cross-Validation Algorithm for Kernel Ridge Regression by Eigenvalue Decomposition

    Akira TANAKA  Hideyuki IMAI  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E102-A No:9
      Page(s):
    1317-1320

    A fast cross-validation algorithm for model selection in kernel ridge regression problems is proposed, which is aiming to further reduce the computational cost of the algorithm proposed by An et al. by eigenvalue decomposition of a Gram matrix.

  • Cross-Validation-Based Association Rule Prioritization Metric for Software Defect Characterization

    Takashi WATANABE  Akito MONDEN  Zeynep YÜCEL  Yasutaka KAMEI  Shuji MORISAKI  

     
    PAPER-Software Engineering

      Pubricized:
    2018/06/13
      Vol:
    E101-D No:9
      Page(s):
    2269-2278

    Association rule mining discovers relationships among variables in a data set, representing them as rules. These are expected to often have predictive abilities, that is, to be able to predict future events, but commonly used rule interestingness measures, such as support and confidence, do not directly assess their predictive power. This paper proposes a cross-validation -based metric that quantifies the predictive power of such rules for characterizing software defects. The results of evaluation this metric experimentally using four open-source data sets (Mylyn, NetBeans, Apache Ant and jEdit) show that it can improve rule prioritization performance over conventional metrics (support, confidence and odds ratio) by 72.8% for Mylyn, 15.0% for NetBeans, 10.5% for Apache Ant and 0 for jEdit in terms of SumNormPre(100) precision criterion. This suggests that the proposed metric can provide better rule prioritization performance than conventional metrics and can at least provide similar performance even in the worst case.

  • On Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion

    Masashi SUGIYAMA  Makoto YAMADA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E95-D No:10
      Page(s):
    2564-2567

    The Hilbert-Schmidt independence criterion (HSIC) is a kernel-based statistical independence measure that can be computed very efficiently. However, it requires us to determine the kernel parameters heuristically because no objective model selection method is available. Least-squares mutual information (LSMI) is another statistical independence measure that is based on direct density-ratio estimation. Although LSMI is computationally more expensive than HSIC, LSMI is equipped with cross-validation, and thus the kernel parameter can be determined objectively. In this paper, we show that HSIC can actually be regarded as an approximation to LSMI, which allows us to utilize cross-validation of LSMI for determining kernel parameters in HSIC. Consequently, both computational efficiency and cross-validation can be achieved.

  • Texture Classification for Liver Tissues from Ultrasonic B-Scan Images Using Testified PNN

    Yan SUN  Jianming LU  Takashi YAHAGI  

     
    PAPER-Pattern Recognition

      Vol:
    E89-D No:8
      Page(s):
    2420-2428

    Visual criteria for diagnosing liver diseases, such as cirrhosis, from ultrasound images can be assisted by computerized texture classification. This paper proposes a system applying a PNN (Pyramid Neural Network) for classifying the hepatic parenchymal diseases in ultrasonic B-scan texture. In this study, we propose a multifractal-dimensions method to select the patterns for the training set and the validation sets. A modified box-counting algorithm is used to calculate the dimensions of the B-scan images. FDWT (Fast Discrete Wavelet Transform) is applied for feature extraction during the preprocessing. The structure of the proposed neural network is testified by training and validation sets by cross-validation method. The performance of the proposed system and a system based on the conventional multilayer network architecture is compared. The results show that, compared with the conventional 3-layer neural network, the performance of the proposed pyramid neural network is improved by efficiently utilizing the lower layer of the neural network.

  • Fast Inversion Method for Electromagnetic Imaging of Cylindrical Dielectric Objects with Optimal Regularization Parameter

    Mitsuru TANAKA  Kuniomi OGATA  

     
    PAPER-EM Theory

      Vol:
    E84-B No:9
      Page(s):
    2560-2565

    This paper presents a fast inversion method for electromagnetic imaging of cylindrical dielectric objects with the optimal regularization parameter used in the Levenberg-Marquardt method. A novel procedure for choosing the optimal regularization parameter is proposed. The method of moments with pulse-basis functions and point matching is applied to discretize the equations for the scattered electric field and the total electric field inside the object. Then the inverse scattering problem is reduced to solving the matrix equation for the unknown expansion coefficients of a contrast function, which is represented as a function of the relative permittivity of the object. The matrix equation may be solved in the least-squares sense with the Levenberg-Marquardt method. Thus the contrast function can be reconstructed by the minimization of a functional, which is expressed as the sum of a standard error term on the scattered electric field and an additional regularization term. While a regularization parameter is usually chosen according to the generalized cross-validation (GCV) method, the optimal one is now determined by minimizing the absolute value of the radius of curvature of the GCV function. This scheme is quite different from the GCV method. Numerical results are presented for a circular cylinder and a stratified circular cylinder consisting of two concentric homogeneous layers. The convergence behaviors of the proposed method and the GCV method are compared with each other. It is confirmed from the numerical results that the proposed method provides successful reconstructions with the property of much faster convergence than the conventional GCV method.