The search functionality is under construction.

Keyword Search Result

[Keyword] curse of dimensionality(2hit)

1-2hit
  • Name Resolution Based on Set of Attribute-Value Pairs of Real-World Information

    Ryoichi KAWAHARA  Hiroshi SAITO  

     
    PAPER-Network

      Pubricized:
    2016/08/04
      Vol:
    E100-B No:1
      Page(s):
    110-121

    It is expected that a large number of different objects, such as sensor devices and consumer electronics, will be connected to future networks. For such networks, we propose a name resolution method for directly specifying a condition on a set of attribute-value pairs of real-world information without needing prior knowledge of the uniquely assigned name of a target object, e.g., a URL. For name resolution, we need an algorithm to find the target object(s) satisfying a query condition on multiple attributes. To address the problem that multi-attribute searching algorithms may not work well when the number of attributes (i.e., dimensions) d increases, which is related to the curse of dimensionality, we also propose a probabilistic searching algorithm to reduce searching time at the expense of a small probability of false positives. With this algorithm, we choose permutation pattern(s) of d attributes to use the first K (K « d) ones to search objects so that they contain relevant attributes with a high probability. We argue that our algorithm can identify the target objects at a false positive rate less than 10-6 and a few percentages of tree-searching cost compared with a naive d-dimensional searching under a certain condition.

  • A State Space Compression Method Based on Multivariate Analysis for Reinforcement Learning in High-Dimensional Continuous State Spaces

    Hideki SATOH  

     
    PAPER-Nonlinear Problems

      Vol:
    E89-A No:8
      Page(s):
    2181-2191

    A state space compression method based on multivariate analysis was developed and applied to reinforcement learning for high-dimensional continuous state spaces. First, useful components in the state variables of an environment are extracted and meaningless ones are removed by using multiple regression analysis. Next, the state space of the environment is compressed by using principal component analysis so that only a few principal components can express the dynamics of the environment. Then, a basis of a feature space for function approximation is constructed based on orthonormal bases of the important principal components. A feature space is thus autonomously construct without preliminary knowledge of the environment, and the environment is effectively expressed in the feature space. An example synchronization problem for multiple logistic maps was solved using this method, demonstrating that it solves the curse of dimensionality and exhibits high performance without suffering from disturbance states.