The search functionality is under construction.

Keyword Search Result

[Keyword] cylindrical function(4hit)

1-4hit
  • Rigorous Analysis of Fields in Junctions between Straight and Curved Rectangular Waveguides

    Mohd Abdur RASHID  Masao KODAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:11
      Page(s):
    1922-1931

    The fields in the junctions between straight and curved rectangular waveguides are analyzed by using the method of separating variables. This method was succeeded because the authors developed the method of numerical calculation of the cylindrical functions of complex order. As a result, we numerically calculate the reflection and transmission coefficients in the junctions in various situations, and we compare these results with the results by the perturbation method and with the results by Jui-Pang et al.

  • Numerical Calculation of Cylindrical Functions in the Transitional Regions Using Asymptotic Series

    Mohd Abdur RASHID  Masao KODAMA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E84-A No:9
      Page(s):
    2303-2310

    There are so many methods of calculating the cylindrical function Zν(x), but it seems that there is no method of calculating Zν(x) in the region of νx and |ν|»1 with high accuracy. The asymptotic series presented by Watson, et al. are frequently used for the numerical calculation of cylindrical function Zν(x) where νx and |ν|»1. However, the function Bm(εx) included in the m'th term of the asymptotic series is known only for m5. Hence, the asymptotic series can not give sufficiently accurate values of the cylindrical functions. The authors attempt to develop programs for the numerical calculation of the cylindrical functions using this asymptotic series. For this purpose, we must know the function Bm(εx) of arbitrary m. We developed a method of calculating Bm(εx) for arbitrary m, and then succeeded in calculating the cylindrical functions in the region νx with high precision.

  • Numerical Calculation of Cylindrical Functions of Complex Order Using Debye's Asymptotic Series

    Mohd Abdur RASHID  Masao KODAMA  

     
    PAPER-Numerical Analysis and Optimization

      Vol:
    E83-A No:12
      Page(s):
    2664-2671

    Debye's asymptotic series is frequently used for calculation of cylindrical functions. However, it seems that until now this series has not been used in all-purpose programs for numerical calculation of the cylindrical functions. The authors attempt to develop these all-purpose programs. We present some improvements for the numerical calculation. As the results, Debye's series can be used for the all-purpose programs, and it is found out that the series gives sufficient accuracy if some conditions are satisfied.

  • Error Estimations of Cylindrical Functions Calculated with Hankel's Asymptotic Expansions

    Masao KODAMA  Hideomi TAKAHASHI  Kengo TAIRA  

     
    LETTER-Numerical Analysis and Optimization

      Vol:
    E80-A No:1
      Page(s):
    238-241

    Hankel's asymptotic expansions are frequently used for numerical calculation of cylindrical functions of complex order. We beforehand need to estimate the precisions of the cylindrical functions calculated with Hankel's asymptotic expansions in order to use these expansions. This letter presents comparatively simple expressions for rough estimations of the errors of the cylindrical functions calculated with the asymptotic expansions, and features of the errors are discussed.