The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] data association(7hit)

1-7hit
  • Multiple Human Tracking Using an Omnidirectional Camera with Local Rectification and World Coordinates Representation

    Hitoshi NISHIMURA  Naoya MAKIBUCHI  Kazuyuki TASAKA  Yasutomo KAWANISHI  Hiroshi MURASE  

     
    PAPER

      Pubricized:
    2020/04/10
      Vol:
    E103-D No:6
      Page(s):
    1265-1275

    Multiple human tracking is widely used in various fields such as marketing and surveillance. The typical approach associates human detection results between consecutive frames using the features and bounding boxes (position+size) of detected humans. Some methods use an omnidirectional camera to cover a wider area, but ID switch often occurs in association with detections due to following two factors: i) The feature is adversely affected because the bounding box includes many background regions when a human is captured from an oblique angle. ii) The position and size change dramatically between consecutive frames because the distance metric is non-uniform in an omnidirectional image. In this paper, we propose a novel method that accurately tracks humans with an association metric for omnidirectional images. The proposed method has two key points: i) For feature extraction, we introduce local rectification, which reduces the effect of background regions in the bounding box. ii) For distance calculation, we describe the positions in a world coordinate system where the distance metric is uniform. In the experiments, we confirmed that the Multiple Object Tracking Accuracy (MOTA) improved 3.3 in the LargeRoom dataset and improved 2.3 in the SmallRoom dataset.

  • Data Association in Bistatic MIMO of T/R-R Mode: Basis Decision and Performance Analysis

    Xiang DUAN  Zishu HE  Hongming LIU  Jun LI  

     
    PAPER-Digital Signal Processing

      Vol:
    E99-A No:8
      Page(s):
    1567-1575

    Bistatic multi-input multi-output (MIMO) radar has the capability of measuring the transmit angle from the receiving array, which means the existence of information redundancy and benefits data association. In this paper, a data association decision for bistatic MIMO radar is proposed and the performance advantages of bistatic MIMO radar in data association is analyzed and evaluated. First, the parameters obtained by receiving array are sent to the association center via coordinate conversion. Second, referencing the nearest neighbor association (NN) algorithm, an improved association decision is proposed with the transmit angle and target range as association statistics. This method can evade the adverse effects of the angle system errors to data association. Finally, data association probability in the presence of array directional error is derived and the correctness of derivation result is testified via Monte Carlo simulation experiments. Besides that performance comparison with the conventional phased array radar verifies the excellent performance of bistatic MIMO Radar in data association.

  • Highest Probability Data Association for Multi-Target Particle Filtering with Nonlinear Measurements

    Da Sol KIM  Taek Lyul SONG  Darko MUŠICKI  

     
    PAPER-Sensing

      Vol:
    E96-B No:1
      Page(s):
    281-290

    In this paper, we propose a new data association method termed the highest probability data association (HPDA) and apply it to real-time recursive nonlinear tracking in heavy clutter. The proposed method combines the probabilistic nearest neighbor (PNN) with a modified probabilistic strongest neighbor (PSN) approach. The modified PSN approach uses only the rank of the measurement amplitudes. This approach is robust as exact shape of amplitude probability density function is not used. In this paper, the HPDA is combined with particle filtering for nonlinear target tracking in clutter. The measurement with the highest measurement-to-track data association probability is selected for track update. The HPDA provides the track quality information which can be used in for the false track termination and the true track confirmation. It can be easily extended to multi-target tracking with nonlinear particle filtering. The simulation studies demonstrate the HPDA functionality in a hostile environment with high clutter density and low target detection probability.

  • A 3D Feature-Based Binocular Tracking Algorithm

    Guang TIAN  Feihu QI  Masatoshi KIMACHI  Yue WU  Takashi IKETANI  

     
    PAPER-Tracking

      Vol:
    E89-D No:7
      Page(s):
    2142-2149

    This paper presents a 3D feature-based binocular tracking algorithm for tracking crowded people indoors. The algorithm consists of a two stage 3D feature points grouping method and a robust 3D feature-based tracking method. The two stage 3D feature points grouping method can use kernel-based ISODATA method to detect people accurately even though the part or almost full occlusion occurs among people in surveillance area. The robust 3D feature-based Tracking method combines interacting multiple model (IMM) method with a cascade multiple feature data association method. The robust 3D feature-based tracking method not only manages the generation and disappearance of a trajectory, but also can deal with the interaction of people and track people maneuvering. Experimental results demonstrate the robustness and efficiency of the proposed framework. It is real-time and not sensitive to the variable frame to frame interval time. It also can deal with the occlusion of people and do well in those cases that people rotate and wriggle.

  • Target Tracking for Maneuvering Targets Using Multiple Model Filter

    Hiroshi KAMEDA  Takashi MATSUZAKI  Yoshio KOSUGE  

     
    INVITED PAPER-Applications

      Vol:
    E85-A No:3
      Page(s):
    573-581

    This paper proposes a maneuvering target tracking algorithm using multiple model filters. This filtering algorithm is discussed in terms of tracking performance, tracking success rate and tracking accuracies for short sampling interval as compared with other conventional methodology. Through several simulations, validity of this algorithm has been confirmed.

  • New Multi-Target Data Association Using OSJPDA Algorithm for Automotive Radar

    Moon-Sik LEE  Yong-Hoon KIM  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E84-C No:8
      Page(s):
    1077-1083

    This paper presents a new multi-target data association method for automotive radar which we call the order statistics joint probabilistic data association (OSJPDA). The method is formulated using the association probabilities of the joint probabilistic data association (JPDA) filter and an optimal target-to-measurement data association is accomplished using the decision logic algorithm. Simulation results for heavily cluttered conditions show that the tracking performance of the OSJPDA filter is better than that of the JPDA filter in terms of tracking accuracy by about 18%.

  • A Multiple-Target Tracking Filter Using Data Association Based on a MAP Approach

    Hong JEONG  Jeong-Ho PARK  

     
    PAPER-Systems and Control

      Vol:
    E83-A No:6
      Page(s):
    1203-1210

    Tracking many targets simultaneously using a search radar has been one of the major research areas in radar signal processing. The primary difficulty in this problem arises from the noise characteristics of the incoming data. Hence it is crucial to obtain an accurate association between targets and noisy measurements in multi-target tracking. We introduce a new scheme for optimal data association, based on a MAP approach, and thereby derive an efficient energy function. Unlike the previous approaches, the new constraints between targets and measurements can manage the cases of target missing and false alarm. Presently, most algorithms need heuristic adjustments of the parameters. Instead, this paper suggests a mechanism that determines the parameters in an automated manner. Experimental results, including PDA and NNF, show that the proposed method reduces position errors in crossing trajectories by 32.8% on the average compared to NNF.