The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] datacenter networks(2hit)

1-2hit
  • Timer-Based Increase and Delay-Based Decrease Algorithm for RDMA Congestion Control

    Masahiro NOGUCHI  Daisuke SUGAHARA  Miki YAMAMOTO  

     
    PAPER-Data Center Network

      Pubricized:
    2021/10/13
      Vol:
    E105-B No:4
      Page(s):
    421-431

    For recent datacenter networks, RDMA (Remote Direct Memory Access) can ease the overhead of the TCP/IP protocol suite. The RoCEv2 (RDMA over Converged Ethernet version 2) standard enables RDMA on widely deployed Ethernet technology. RoCEv2 leverages priority-based flow control (PFC) for realizing the lossless environment required by RDMA. However, PFC is well-known to have the technical weakness of head-of-line blocking. Congestion control for RDMA is a very hot research topic for datacenter networks. In this paper, we propose a novel congestion control algorithm for RoCEv2, TIDD (Timer-based Increase and Delay-based Decrease). TIDD basically combines the timer-based increase of DCQCN and delay-based decrease of TIMELY. Extensive simulation results show that TIDD satisfies the high throughput and low latency required for datacenter networks.

  • Accelerating the Performance of Software Tunneling Using a Receive Offload-Aware Novel L4 Protocol Open Access

    Ryota KAWASHIMA  Hiroshi MATSUO  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2180-2189

    An L2-in-L3 tunneling technology plays an important role in network virtualization based on the concept of Software-Defined Networking (SDN). VXLAN (Virtual eXtensible LAN) and NVGRE (Network Virtualization using Generic Routing Encapsulation) protocols are being widely used in public cloud datacenters. These protocols resolve traditional VLAN problems such as a limitation of the number of virtual networks, however, their network performances are low without dedicated hardware acceleration. Although STT (Stateless Transport Tunneling) achieves far better performance, it has pragmatic problems in that STT packets can be dropped by network middleboxes like stateful firewalls because of modified TCP header semantics. In this paper, we propose yet another layer 4 protocol (Segment-oriented Connection-less Protocol, SCLP) for existing tunneling protocols. Our previous study revealed that the high-performance of STT mainly comes from 2-level software packet pre-reassembly before decapsulation. The SCLP header is designed to take advantage of such processing without modifying existing protocol semantics. We implement a VXLAN over SCLP tunneling and evaluate its performance by comparing with the original VXLAN (over UDP), NVGRE, Geneve, and STT. The results show that the throughput of the proposed method was comparable to STT and almost 70% higher than that of other protocols.