The search functionality is under construction.

Keyword Search Result

[Keyword] de-hazing(2hit)

1-2hit
  • Fast Fog Detection for De-Fogging of Road Driving Images

    Kyeongmin JEONG  Kwangyeon CHOI  Donghwan KIM  Byung Cheol SONG  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2017/10/30
      Vol:
    E101-D No:2
      Page(s):
    473-480

    Advanced driver assistance system (ADAS) can recognize traffic signals, vehicles, pedestrians, and so on all over the vehicle. However, because the ADAS is based on images taken in an outdoor environment, it is susceptible to ambient weather such as fog. So, preprocessing such as de-fog and de-hazing techniques is required to prevent degradation of object recognition performance due to decreased visibility. But, if such a fog removal technique is applied in an environment where there is little or no fog, the visual quality may be deteriorated due to excessive contrast improvement. And in foggy road environments, typical fog removal algorithms suffer from color distortion. In this paper, we propose a temporal filter-based fog detection algorithm to selectively apply de-fogging method only in the presence of fog. We also propose a method to avoid color distortion by detecting the sky region and applying different methods to the sky region and the non-sky region. Experimental results show that in the actual images, the proposed algorithm shows an average of more than 97% fog detection accuracy, and improves subjective image quality of existing de-fogging algorithms. In addition, the proposed algorithm shows very fast computation time of less than 0.1ms per frame.

  • Fast Single Image De-Hazing Using Characteristics of RGB Channel of Foggy Image

    Dubok PARK  David K. HAN  Changwon JEON  Hanseok KO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E96-D No:8
      Page(s):
    1793-1799

    Images captured under foggy conditions often exhibit poor contrast and color. This is primarily due to the air-light which degrades image quality exponentially with fog depth between the scene and the camera. In this paper, we restore fog-degraded images by first estimating depth using the physical model characterizing the RGB channels in a single monocular image. The fog effects are then removed by subtracting the estimated irradiance, which is empirically related to the scene depth information obtained, from the total irradiance received by the sensor. Effective restoration of color and contrast of images taken under foggy conditions are demonstrated. In the experiments, we validate the effectiveness of our method compared with conventional method.