The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] deinterleaving(2hit)

1-2hit
  • A Novel Method of Deinterleaving Pulse Repetition Interval Modulated Sparse Sequences in Noisy Environments

    Mahmoud KESHAVARZI  Delaram AMIRI  Amir Mansour PEZESHK  Forouhar FARZANEH  

     
    LETTER-Digital Signal Processing

      Vol:
    E97-A No:5
      Page(s):
    1136-1139

    This letter presents a novel method based on sparsity, to solve the problem of deinterleaving pulse trains. The proposed method models the problem of deinterleaving pulse trains as an underdetermined system of linear equations. After determining the mixing matrix, we find sparsest solution of an underdetermined system of linear equations using basis pursuit denoising. This method is superior to previous ones in a number of aspects. First, spurious and missing pulses would not cause any performance reduction in the algorithm. Second, the algorithm works well despite the type of pulse repetition interval modulation that is used. Third, the proposed method is able to separate similar sources.

  • Radar Signal Clustering and Deinterleaving by a Neural Network

    Hsuen-Chyun SHYU  Chin-Chi CHANG  Yueh-Jyun LEE  Ching-Hai LEE  

     
    PAPER-Neural Networks

      Vol:
    E80-A No:5
      Page(s):
    903-911

    A structure of neural network suitable for clustering and deinterleaving radar pulses is proposed. The proposed structure consists of two networks, one for intrinsic features of pluses and the other for PRIs (pulse repetition intervals). The unsupervised learning method which adjusts the number of nodes for clusters adaptively is adopted for these two networks to learn patterns. These two networks are connected by a set of links. According to the weights of these links, the clusters categorized by the network for features can be refined further by merging or partitioning. The main defect of the unsupervised network with an adaptive number of nodes for clusters is that the result of classification closely depends on the learning sequence of patterns. This defect can be improved by the proposed refinement algorithm. In addition to the proposed structure and learning algorithms, simulation results have also been discussed.