The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dielectric sphere(3hit)

1-3hit
  • Electromagnetic Waves on Partially Finite Periodic Arrays of Lossless or Lossy Penetrable Spheres

    Robert A. SHORE  Arthur D. YAGHJIAN  

     
    PAPER-Electromagnetics

      Vol:
    E91-B No:6
      Page(s):
    1819-1824

    An exact computable expression is obtained for the electromagnetic field of a three-dimensional partially finite periodic array of lossless or lossy magnetodielectric spheres illuminated by a plane wave propagating parallel to the array axis. The array is finite in the direction of the array axis and is of infinite extent in the directions transverse to the array axis. Illustrative numerical examples are presented.

  • Traveling Electromagnetic Waves on Linear Periodic Arrays of Lossless Penetrable Spheres

    Robert A. SHORE  Arthur D. YAGHJIAN  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2346-2352

    Traveling electromagnetic waves on infinite linear periodic arrays of lossless penetrable spheres can be conveniently analyzed using the source scattering-matrix framework and vector spherical wave functions. It is assumed that either the spheres are sufficiently small, or the frequency such, that the sphere scattering can be treated using only electric and magnetic dipole vector spherical waves, the electric and magnetic dipoles being orthogonal to each other and to the array axis. The analysis simplifies because there is no cross-coupling of the modes in the scattering matrix equations. However, the electric and magnetic dipoles in the array are coupled through the fields scattered by the spheres. The assumption that a dipolar traveling wave along the array axis can be supported by the array of spheres yields a pair of equations for determining the traveling wave propagation constant as a function of the sphere size, inter-sphere separation distance, the sphere permittivity and permeability, and the free-space wave number. These equations are obtained by equating the electric (magnetic) field incident on any sphere of the array with the sum of the electric (magnetic) fields scattered from all the other spheres in the array. Both equations include a parameter equal to the ratio of the unknown normalized coefficients of the electric and magnetic dipole fields. By eliminating this parameter between the two equations, a single transcendental equation is obtained that can be easily solved numerically for the traveling wave propagation constant. Plots of the k - β diagram for different types and sizes of spheres are shown. Interestingly, for certain spheres and separations it is possible to have multiple traveling waves supported by the array. Backward traveling waves are also shown to exist in narrow frequency bands for arrays of spheres with suitable permittivity and permeability.

  • Analysis of Time Transient EM Field Response from a Dielectric Spherical Cavity

    Hiroshi SHIRAI  Eiji NAKANO  Mikio YANO  

     
    PAPER-Electromagnetic Theory

      Vol:
    E75-C No:5
      Page(s):
    627-634

    Transient responses by a dielectric sphere have been analyzed here for a dipole source located at the center. The formulation has been constructed first in the frequency domain, then transformed into the time domain to obtain for an impulsive response by two analytical methods, namely the Singularity Expansion Method and the Wavefront Expansion Method. While the former method collects the contributions around the singularities in the complex frequency domain, the latter gives us a result which is a summation of each successive wavefront arrivals. A Gaussian pulse has been introduced to simulate an impulse response result. The Gaussian pulse response is analytically formulated by convolving Gaussian pulse with the corresponding impulse response. Numercal inversion results are also calculated by Fast Fourier Transform Algorithm. Numerical examples are shown here to compare the results obtained by these three methods and good agreement are obtained between them. Comments are often made in connection with the corresponding two dimensional cylindrical case.