The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] differential mode delay(2hit)

1-2hit
  • Measurement of Spectral Transfer Matrix for DMD Analysis by Using Linear Optical Sampling

    Yuki OSAKA  Fumihiko ITO  Daisuke IIDA  Tetsuya MANABE  

     
    PAPER

      Pubricized:
    2020/06/08
      Vol:
    E103-B No:11
      Page(s):
    1233-1239

    Mode-by-mode impulse responses, or spectral transfer matrix (STM) of birefringent fibers are measured by using linear optical sampling, with assist of polarization multiplexed probe pulse. By using the eigenvalue analysis of the STM, the differential mode delay and PMD vector of polarization-maintaining fiber are analyzed as a function of optical frequency over 1THz. We show that the amplitude averaging of the complex impulse responses is effective for enhancing the signal-to-noise ratio of the measurement, resulting in improving the accuracy and expanding the bandwidth of the measurement.

  • Fourier-Domain Modal Delay Measurements for Multimode Fibers Optimized for the 850-nm Band in a Local Area Network

    Chan-Young KIM  Tae-Jung AHN  

     
    PAPER-Optical Fiber for Communications

      Vol:
    E96-B No:11
      Page(s):
    2840-2844

    We present transmission- and reflection-type measurement methods for the differential mode delay (DMD) of a multimode optical fiber (MMF) optimized for high-speed local area networks (LANs) for the 850-nm band. Compared with a previously reported transmission-type measurement method for the 1550-nm wavelength band, we demonstrate here high-resolution DMD measurement methods for MMFs in the 850-nm band. As the method is based on a Fourier-domain intermodal interference technique, the measurement sensitivity is ∼60-dB, and it requires a fiber only a few meters in length. The shorter wavelength also allows a threefold improvement in the measurement resolution. The reflection-type measurement technique is a more practical than the transmission-type measurement technique for the field testing of short MMFs already installed in networks. We believe that this method will be a practical tool not only for field testing of short-length MMFs already installed in networks but also for the development of new plastic optical fibers (POFs).