The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] diffraction beam(3hit)

1-3hit
  • Periodic Fourier Transform and Its Application to Wave Scattering from a Finite Periodic Surface: Two-Dimensional Case

    Junichi NAKAYAMA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E88-C No:5
      Page(s):
    1025-1032

    In this paper, the previously introduced periodic Fourier transform concept is extended to a two-dimensional case. The relations between the periodic Fourier transform, harmonic series representation and Fourier integral representation are also discussed. As a simple application of the periodic Fourier transform, the scattering of a scalar wave from a finite periodic surface with weight is studied. It is shown that the scattered wave may have an extended Floquet form, which is physically considered as the sum of diffraction beams. By the small perturbation method, the first order solution is given explicitly and the scattering cross section is calculated.

  • Wave Scattering from a Finite Periodic Surface: Spectral Formalism for TE Wave

    Junichi NAKAYAMA  Yoshinobu KITADA  

     
    PAPER-Electromagnetic Theory

      Vol:
    E86-C No:6
      Page(s):
    1098-1105

    This paper deals with the wave scattering from a periodic surface with finite extent. Modifying a spectral formalism, we find that the spectral amplitude of the scattered wave can be determined by the surface field on only the corrugated part of the surface. The surface field on such a corrugated part is then expanded into Fourier series with unknown Fourier coefficients. A matrix equation for the Fourier coefficients is obtained and is solved numerically for a sinusoidally corrugated surface. Then, the angular distribution of the scattering, the relative power of each diffraction beam and the optical theorem are calculated and illustrated in figures. Also, the relative powers of diffraction are calculated against the angle of incidence for a periodic surface with infinite extent. By comparing a finite periodic case with an infinite periodic case, it is pointed out that relative powers of diffraction beam are much similar in these of diffraction for the infinite periodic case.

  • Wave Scattering and Diffraction from a Finite Periodic Surface: Diffraction Order and Diffraction Beam

    Junichi NAKAYAMA  Hayato TSUJI  

     
    PAPER-Electromagnetic Theory

      Vol:
    E85-C No:10
      Page(s):
    1808-1813

    This paper deals with a mathematical formulation of the scattering from a periodic surface with finite extent. In a previous paper the scattered wave was shown to be represented by an extended Floquet form by use of the periodic nature of the surface. This paper gives a new interpretation of the extended Floquet form, which is understood as a sum of diffraction beams with diffraction orders. Then, the power flow of each diffraction beam and the relative power of diffraction are introduced. Next, on the basis of a physical assumption such that the wave scattering takes place only from the corrugated part of the surface, the amplitude functions are represented by the sampling theorem with unknown sample sequence. From the Dirichlet boundary condition, an equation for the sample sequence is derived and solved numerically to calculate the scattering cross section and optical theorem. Discussions are given on a hypothesis such that the relative power of diffracted beam becomes almost independent of the width of surface corrugation.