1-3hit |
Thumrongrat AMORNRAKSA Peter SWEENEY
In this paper, a dual level access scheme is proposed to provide two levels of access to the broadcast data; one to video signals protected for authorized users, another to extra information e.g. advertisements provided for the remaining users in the network. In the scheme, video signals in MPEG format are considered. The video contents are protected from unauthorized viewing by encrypting the DC coefficients of the luminance component in I-frames, which are extracted from the MPEG bit-stream. An improved direct sequence spread spectrum technique is used to add extra information to non-zero AC coefficients, extracted from the same MPEG bit-stream. The resultant MPEG bit-stream still occupies the same existing bandwidth allocated for a broadcast channel. At the receiver, the extra information is recovered and subtracted from the altered AC coefficients. The result is then combined with the decrypted DC coefficients to restore the original MPEG bit-stream. The experimental results show that less than 2.9% of the size of MPEG bit-stream was required to be encrypted in order to efficiently reduce its commercial value. Also, on average, with a 1.125 Mbps MPEG bit-stream, an amount of extra information up to 1.4 kbps could be successfully transmitted, while the video quality (PSNR) was unnoticeably degraded by 2.81 dB.
Ming-Huei CHEN Bih-Hwang LEE Chwan-Chia WU
This paper conducts performance evaluation and performs simulation for a code division multiple access (CDMA) system when channel bands of multiple neighboring CDMA/DSSS are overlapped in time domain. It is assumed that all systems adopt direct-sequence spread-spectrum (DSSS) technique and are BPSK modulated by the different carrier frequencies. Automatic power control (APC) is also applied in the interfered system such that the receiver gets the same power from all users. Without loss generality, an additive white Gaussian noise (AWGN) channel is also assumed during analysis. In this paper, the analytic solution of the signal to noise ratio (SNR) is first derived in which both CDMA systems are modulated by different carrier frequencies. We have the results by simulation with Δ f = 0 and Δ f = 1 MHz, respectively. This analysis is good for general cases; and the results show an excellent computational performance. In particular, the result is very close to Pursley's result, when the systems have the same code length with no carrier difference.
Ming-Heui CHEN Bih-Hwang LEE Chwan-Chia WU
This paper conducts performance evaluation for a code division multiple access (CDMA) system when channel bands of multiple neighboring CDMA/DSSS are overlapped in frequency domain. It is assumed that all systems adopt direct-sequence spread-spectrum (DSSS) technique and are BPSK modulated by the different carrier frequencies. Automatic power control (APC) is also applied in the interfered system such that the receiver gets the same power from all users. Without loss generality, an additive white Gaussian noise (AWGN) channel is also assumed during analysis. In this paper, the analytic solution of the signal to noise ratio (SNR) is first derived in which both CDMA systems are modulated by different carrier frequencies. This analysis is good for general cases; and the result shows an excellent computational performance. In particular, the result is very close to Pursly's result, when the systems have the same code length with no carrier difference.