The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] discrete-time models(2hit)

1-2hit
  • Estimating Periodic Software Rejuvenation Schedules under Discrete-Time Operation Circumstance

    Kazuki IWAMOTO  Tadashi DOHI  Naoto KAIO  

     
    PAPER-Dependable Computing

      Vol:
    E91-D No:1
      Page(s):
    23-31

    Software rejuvenation is a preventive and proactive solution that is particularly useful for counteracting the phenomenon of software aging. In this article, we consider periodic software rejuvenation models based on the expected cost per unit time in the steady state under discrete-time operation circumstance. By applying the discrete renewal reward processes, we describe the stochastic behavior of a telecommunication billing application with a degradation mode, and determine the optimal periodic software rejuvenation schedule minimizing the expected cost. Similar to the earlier work by the same authors, we develop a statistically non-parametric algorithm to estimate the optimal software rejuvenation schedule, by applying the discrete total time on test concept. Numerical examples are presented to estimate the optimal software rejuvenation schedules from the simulation data. We discuss the asymptotic behavior of estimators developed in this paper.

  • Discrete Availability Models to Rejuvenate a Telecommunication Billing Application

    Tadashi DOHI  Kazuki IWAMOTO  Hiroyuki OKAMURA  Naoto KAIO  

     
    PAPER-Network Systems and Applications

      Vol:
    E86-B No:10
      Page(s):
    2931-2939

    Software rejuvenation is a proactive fault management technique that has been extensively studied in the recent literature. In this paper, we focus on an example for a telecommunication billing application considered in Huang et al. (1995) and develop the discrete-time stochastic models to estimate the optimal software rejuvenation schedule. More precisely, two software availability models with rejuvenation are formulated via the discrete semi-Markov processes, and the optimal software rejuvenation schedules which maximize the steady-state availabilities are derived analytically. Further, we develop statistically non-parametric algorithms to estimate the optimal software rejuvenation schedules, provided that the complete sample data of failure times are given. Then, a new statistical device, called the discrete total time on test statistics, is introduced. Finally, we examine asymptotic properties for the statistical estimation algorithms proposed in this paper through a simulation experiment.