1-1hit |
Jun SONODA Keimei KAINO Motoyuki SATO
The finite-difference time-domain (FDTD) method has been widely used in recent years to analyze the propagation and scattering of electromagnetic waves. Because the FDTD method has second-order accuracy in space, its numerical dispersion error arises from truncated higher-order terms of the Taylor expansion. This error increases with the propagation distance in cases of large-scale analysis. The numerical dispersion error is expressed by a dispersion relation equation. It is difficult to solve this nonlinear equation which have many parameters. Consequently, a simple formula is necessary to substitute for the dispersion relation error. In this study, we have obtained a simple formula for the numerical dispersion error of 2-D and 3-D FDTD method in free space propagation.