The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] dual band antenna(2hit)

1-2hit
  • 12- and 21-GHz Dual-Band Dual-Circularly Polarized Offset Parabolic Reflector Antenna Fed by Microstrip Antenna Arrays for Satellite Broadcasting Reception Open Access

    Masafumi NAGASAKA  Masaaki KOJIMA  Hisashi SUJIKAI  Jiro HIROKAWA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2019/01/09
      Vol:
    E102-B No:7
      Page(s):
    1323-1333

    In December 2018, satellite broadcasting for 4K/8K ultra-high-definition television (UHDTV) will begin in Japan. It will be provided in the 12-GHz (11.7 to 12.75GHz) band with right- and left-hand circular polarizations. BSAT-4a, a satellite used for broadcasting UHDTV, was successfully launched in September 2017. This satellite has not only 12-GHz-band right- and left-hand circular polarization transponders but also a 21-GHz-band experimental transponder. The 21-GHz (21.4 to 22.0GHz) band has been allocated as the downlink for broadcasting satellite service in ITU-R Regions 1 (Europe, Africa) and 3 (Asia Pacific). To receive services provided over these two frequency bands and with dual-polarization, we implement and evaluated a dual-band and dual-circularly polarized parabolic reflector antenna fed by 12- and 21-GHz-band microstrip antenna arrays with a multilayer structure. The antenna is used to receive 12- and 21-GHz-band signals from in-orbit satellites. The measured and experimental results prove that the proposed antenna performs as a dual-polarized antenna in those two frequency bands and has sufficient performance to receive satellite broadcasts.

  • A Path Loss Model in Residential Areas Based on Measurement Studies Using a 5.2-GHz/2.2-GHz Dual Band Antenna

    Naoki KITA  Shuta UWANO  Akio SATO  Masahiro UMEHIRA  

     
    PAPER

      Vol:
    E84-B No:3
      Page(s):
    368-376

    Research on the propagation characteristics in the microwave band aiming at broadband mobile services is attracting much attention. Typical examples are the Unlicensed-NII (U-NII) band in the U.S. and HIPER-LAN band in Europe, i.e. 5.2 GHz. An efficient approach to revealing the propagation characteristics in the 5-GHz band is to utilize the existing propagation data accumulated by many researchers on the 2-GHz band. This paper presents the differences in path loss between the 5.2-GHz and 2.2-GHz bands in a residential area by using a 5.2-GHz/2.2-GHz dual band antenna. This antenna enables a direct comparison of 5.2 GHz and 2.2 GHz in terms of the propagation characteristics. We found that the difference in path loss between the 2.2-GHz and 5.2-GHz bands depends on only the base/mobile station antenna height. Based on this, we formulate the relationship between the heights of the base/mobile station antennas and the difference in path loss between the 2.2-GHz and 5.2-GHz bands.