The search functionality is under construction.

Keyword Search Result

[Keyword] dynamic graph(3hit)

1-3hit
  • An Efficient Method for Graph Repartitioning in Distributed Environments

    He LI  YanNa LIU  XuHua WANG  LiangCai SU  Hang YUAN  JaeSoo YOO  

     
    LETTER-Data Engineering, Web Information Systems

      Pubricized:
    2020/04/20
      Vol:
    E103-D No:7
      Page(s):
    1773-1776

    Due to most of the existing graph repartitioning methods are known for poor efficiency in distributed environments. In this paper, we introduce a new graph repartitioning method with two phases in distributed environments. In the first phase, a local method is designed to identify all the potential candidate vertices that should be moved to the other partitions at once in each partition locally. In the second phase, a streaming graph processing model is adopted to reassign the candidate vertices to achieve lightweight graph repartitioning. During the reassignment of the vertex, we propose an objective function to balance both the load balance and the number of crossing edges among the distributed partitions. The experimental results with a large set of real word and synthetic graph datasets show that the communication cost can be reduced by nearly 1 to 2 orders of magnitude compared with the existing methods.

  • Computing a Minimum Cut in a Graph with Dynamic Edges Incident to a Designated Vertex

    Hiroshi NAGAMOCHI  

     
    PAPER-Graph Algorithms

      Vol:
    E90-D No:2
      Page(s):
    428-431

    We consider an edge-weighted graph G with a designated vertex v0 such that weights of edges incident to v0 may increase or decrease. We show that, with an O(mn+n2log n) time preprocessing, a minimum cut of the current G can be computed in O(log n) time per update of weight of any edge {v0,u}.

  • What HMMs Can Do

    Jeff A. BILMES  

     
    INVITED PAPER

      Vol:
    E89-D No:3
      Page(s):
    869-891

    Since their inception almost fifty years ago, hidden Markov models (HMMs) have have become the predominant methodology for automatic speech recognition (ASR) systems--today, most state-of-the-art speech systems are HMM-based. There have been a number of ways to explain HMMs and to list their capabilities, each of these ways having both advantages and disadvantages. In an effort to better understand what HMMs can do, this tutorial article analyzes HMMs by exploring a definition of HMMs in terms of random variables and conditional independence assumptions. We prefer this definition as it allows us to reason more throughly about the capabilities of HMMs. In particular, it is possible to deduce that there are, in theory at least, no limitations to the class of probability distributions representable by HMMs. This paper concludes that, in search of a model to supersede the HMM (say for ASR), rather than trying to correct for HMM limitations in the general case, new models should be found based on their potential for better parsimony, computational requirements, and noise insensitivity.