The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] elastic matching(2hit)

1-2hit
  • Development of a Robust and Compact On-Line Handwritten Japanese Text Recognizer for Hand-Held Devices

    Jinfeng GAO  Bilan ZHU  Masaki NAKAGAWA  

     
    PAPER-Pattern Recognition

      Vol:
    E96-D No:4
      Page(s):
    927-938

    The paper describes how a robust and compact on-line handwritten Japanese text recognizer was developed by compressing each component of an integrated text recognition system including a SVM classifier to evaluate segmentation points, an on-line and off-line combined character recognizer, a linguistic context processor, and a geometric context evaluation module to deploy it on hand-held devices. Selecting an elastic-matching based on-line recognizer and compressing MQDF2 via a combination of LDA, vector quantization and data type transformation, have contributed to building a remarkably small yet robust recognizer. The compact text recognizer covering 7,097 character classes just requires about 15 MB memory to keep 93.11% accuracy on horizontal text lines extracted from the TUAT Kondate database. Compared with the original full-scale Japanese text recognizer, the memory size is reduced from 64.1 MB to 14.9 MB while the accuracy loss is only 0.5% from 93.6% to 93.11%. The method is scalable so even systems of less than 11 MB or less than 6 MB still remain 92.80% or 90.02% accuracy, respectively.

  • A Survey of Elastic Matching Techniques for Handwritten Character Recognition

    Seiichi UCHIDA  Hiroaki SAKOE  

     
    SURVEY PAPER-Character Recognition

      Vol:
    E88-D No:8
      Page(s):
    1781-1790

    This paper presents a survey of elastic matching (EM) techniques employed in handwritten character recognition. EM is often called deformable template, flexible matching, or nonlinear template matching, and defined as the optimization problem of two-dimensional warping (2DW) which specifies the pixel-to-pixel correspondence between two subjected character image patterns. The pattern distance evaluated under optimized 2DW is invariant to a certain range of geometric deformations. Thus, by using the EM distance as a discriminant function, recognition systems robust to the deformations of handwritten characters can be realized. In this paper, EM techniques are classified according to the type of 2DW and the properties of each class are outlined. Several topics around EM, such as the category-dependent deformation tendency of handwritten characters, are also discussed.