The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] elastic traffic(5hit)

1-5hit
  • Overflows in Multiservice Systems Open Access

    Mariusz GłĄBOWSKI  Damian KMIECIK  Maciej STASIAK  

     
    INVITED PAPER

      Pubricized:
    2018/11/22
      Vol:
    E102-B No:5
      Page(s):
    958-969

    This article presents a universal and versatile model of multiservice overflow systems based on Hayward's concept. The model can be used to analyze modern telecommunications and computer networks, mobile networks in particular. The advantage of the proposed approach lies in its ability to analyze overflow systems with elastic and adaptive traffic, systems with distributed resources and systems with non-full-availability in primary and secondary resources.

  • Queuing Systems for the Internet Open Access

    Maciej STASIAK  

     
    INVITED PAPER

      Vol:
    E99-B No:6
      Page(s):
    1234-1242

    This article proposes a versatile model of a multiservice queueing system with elastic traffic. The model can provide a basis for an analysis of telecommunications and computer network systems, internet network systems in particular. The advantage of the proposed approach is a possibility of a determination of delays in network nodes for a number of selected classes of calls offered in modern telecommunications networks.

  • Call-Level Performance Modelling of Elastic and Adaptive Service-Classes with Finite Population

    Vassilios G. VASSILAKIS  Ioannis D. MOSCHOLIOS  Michael D. LOGOTHETIS  

     
    PAPER-Fundamental Theories for Communications

      Vol:
    E91-B No:1
      Page(s):
    151-163

    The call-level performance modelling is a challenge in the highly heterogeneous environment of modern telecom networks, due to the presence of elastic traffic. In this paper, we review existing teletraffic loss models and propose a model for elastic traffic of service-classes with finite population (quasi-random call arrival process). Upon arrival, calls have contingency alternative bandwidth requirements that depend on thresholds which indicate the available/occupied link bandwidth (state dependent model). Calls are admitted under the complete sharing policy, and can tolerate bandwidth compression, while in-service. We prove a recurrent formula for the efficient calculation of the link occupancy distribution and consequently the call blocking probabilities and link utilization. The accuracy of the proposed model is verified by simulation and is found to be quite satisfactory. Comparative results with other existing models show the necessity and the effectiveness of the proposed model. Its potential applications are mainly in the environment of wireless networks.

  • New Algorithm for the Generalized Max-Min Fairness Policy Based on Linear Programming

    Ioannis D. MOSCHOLIOS  Michael D. LOGOTHETIS  

     
    LETTER-Network

      Vol:
    E88-B No:2
      Page(s):
    775-780

    The Generalized Max-Min Fairness policy (GMM) allocates in a fair way the available bandwidth among elastic calls by taking into account their minimum and maximum rate requirements. The GMM has been described in a five-step procedure, which has the advantage of an easy presentation, but does not come into details, as far as its computer implementation is concerned, and fails to describe the policy in a clear mathematical way. We propose a new algorithm for the GMM policy, in a clear mathematical way, based on Linear Programming (LP). The new algorithm is directly convertible into software. Numerical examples clarify our algorithm.

  • A Fuzzy-Hierarchical Algorithm for Proportionally-Fair Rate Allocation to Elastic Users

    Pejman GUDARZI  Hossein SAIDI  Farid SHEIKHOLESLAM  

     
    PAPER-Network

      Vol:
    E87-B No:11
      Page(s):
    3203-3215

    Fairness is one of the most important features of a rate allocation strategy. Proportional fairness criterion has been recently proposed by F. P. Kelly and his colleagues. In this paper, we have proposed a two-level hierarchical technique which allocates proportionally-fair rates to the network elastic users. Part of the network links which are used commonly by the end-users and are congestion prone, constitute the higher (first) level of the hierarchy. In this level, the users with common path in the network are grouped as virtual users. End-users and remaining network links constitute the lower (second) level of hierarchy. To improve the convergence rate of the algorithm, a combination of Jacobi method and fuzzy techniques is deployed in the higher level of hierarchy. Implementing such fast algorithms in the higher level (which is topologically simpler than the whole network), reduces the computational complexity with respect to the use of such algorithms in the whole network. Additionally, the lower level penalty function computation is done once in each N iterations, which reduces the computational complexity furthermore. The simulation results show that the proposed algorithm outperforms that of Kelly in the convergence speed.