The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] equivalent circuits(4hit)

1-4hit
  • A Reduction Technique for RLCG Interconnects Using Least Squares Method

    Junji KAWATA  Yuichi TANJI  Yoshifumi NISHIO  Akio USHIDA  

     
    PAPER

      Vol:
    E88-A No:2
      Page(s):
    513-523

    In this paper, we propose a new algorithm for calculating the exact poles of the admittance matrix of RLCG interconnects. After choosing dominant poles and corresponding residues, each element of the exact admittance matrix is approximated by partial fraction. A procedure to obtain the residues that guarantee the passivity is also provided, based on experimental studies. In the procedure the residues are calculated by using the least squares method so that the partial fraction matches each element of the exact admittance matrix in the frequency-domain. From the partial fraction representation, the asymptotic equivalent circuit models which can be easily simulated with SPICE are synthesized. It is shown that an efficient model-order reduction is possible for short-length interconnects.

  • Hybrid MOM-Immittance Approach for Full-Wave Characterization of Printed Strips and Slots in Layered Waveguide and Its Applications

    Rakhesh Singh KSHETRIMAYUM  Lei ZHU  

     
    PAPER-General Methods, Materials, and Passive Circuits

      Vol:
    E87-C No:5
      Page(s):
    700-707

    A hybrid method-of-moments (MoM) and immittance approach for efficient and accurate analysis of printed slots and strips of arbitrary shape in layered waveguide for various applications has been proposed. An impedance-type MoM is formulated from the electric field integral equation (EFIE) for printed strip case and an admittance-type MoM is formulated from the magnetic field integral equation (MFIE) for the printed slot case, using the Galerkin's technique. Immittance approach has been used to calculate spectral dyadic Green's functions for the layered waveguide. For efficient analysis of large and complex structures, equivalent circuit parameters of a block are first extracted and complete structure is analyzed through cascaded ABCD matrices. The equivalent circuit characterization of printed strip and slot in layered waveguide has been done for the first time. Finite periodic structure loaded with printed strips has been investigated and it shows the electromagnetic bandgap (EBG) behavior. The electromagnetic (EM) program hence developed is checked for its numerical accuracy and efficiency with results generated with High-frequency structure simulator (HFSS) and shows good performance.

  • Models of Small Microwave Devices in FDTD Simulation

    Qing-Xin CHU  Xiao-Juan HU  Kam-Tai CHAN  

     
    INVITED PAPER

      Vol:
    E86-C No:2
      Page(s):
    120-125

    In the FDTD simulation of microwave circuits, a device in very small size compared with the wavelength is often handled as a lumped element, but it may still occupy more than one cell instead of a wire structure without volume routinely employed in classical extended FDTD algorithms. In this paper, two modified extended FDTD algorithms incorporating a lumped element occupying more than one cell are developed directly from the integral form of Maxwell's equations based on the assumption whether displacement current exists inside the region where a device is present. If the displacement current exists, the modified extended FDTD algorithm can be represented as a Norton equivalent current-source circuit, or otherwise as a Thevenin equivalent voltage-source circuit. These algorithms are applied in the microwave line loaded by a lumped resistor and an active antenna to illustrated the efficiency and difference of the two algorithms.

  • Circuit Oriented Electromagnetic Solutions in the Time and Frequency Domain

    Albert E. RUEHLI  

     
    INVITED PAPER

      Vol:
    E80-B No:11
      Page(s):
    1594-1603

    Recently, progress has been made in the area of electrical modeling of conductors embedded in arbitrary dielectrics using circuit oriented techniques. These models usually occur in conjunction with VLSI type circuits. Many different applications exist today for such models in the EMI, EIP (Electrical Interconnect and Package) analysis as well as for the microwave circuit area. Practical problems involve a multitude of hardware components and they demand a wide spectrum of both time as well as frequency domain solution techniques. In this paper we consider circuit oriented techniques for the solution of these problems. Specifically, we give an outline of the three dimensional Partial Element Equivalent Circuit (PEEC) full wave modeling approach and review the recent progress in this area.