The search functionality is under construction.

Keyword Search Result

[Keyword] exclusive region(2hit)

1-2hit
  • Density-Aware Scheduling Based on the Exclusive Region in UWB-WPAN Systems

    Byung Wook KIM  Sung-Yoon JUNG  Dong-Jo PARK  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E95-B No:6
      Page(s):
    2074-2079

    Ultra-wideband (UWB) technology is an excellent candidate for supporting wireless personal area networks (WPANs) because of its wide bandwidth, low transmission power, low complexity and multipath immunity. We study density-aware exclusive region (ER)-based scheduling for a nonuniform UWB-WPAN. Using a generalized radius for the ER based on statistical topology, we propose a scheduling scheme that uses a radius for the ER that varies according to the density information around the destination in the nonuniform network. Computer simulations show that (i) our approach to the radius of the generalized ER provides better scheduling performance than the radius solution of the conventional work [3] and (ii) scheduling that is based on an adaptive ER radius can always outperform both the fixed ER-based scheme and the TDMA scheme with respect to network throughput.

  • Power Controlled Concurrent Transmissions in mmWave WPANs

    Yongsun KIM  Meejoung KIM  Wooyong LEE  Chul-Hee KANG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E93-B No:10
      Page(s):
    2808-2811

    This letter considers power-controlled transmission from directional antennas in mmWave wireless personal area network (WPAN) systems. The attributes of these systems are studied; these include the number of concurrent transmissions and the power consumption with different system parameters, such as the antenna's beamwidth and radiating efficiency. Numerical results are presented to show that the power controlled transmission enables more concurrent transmissions than the non-power controlled transmission. The results also show that the number of concurrent transmissions increases as the beamwidth and the path loss component become smaller and the antenna's radiating efficiency increases. In addition, the power controlled system generally uses less power than the non-power controlled transmission set up; the overall analysis is verified by simulation.