Dac-Binh HA Vo Nguyen Quoc BAO Nguyen-Son VO
We derive a closed-form expression for the outage probability (OP), which is an important performance metric used to measure the probability that the target error rate performance of wireless systems exceeds a specified value, of multiple-input multiple-output (MIMO) amplify-and-forward (AF) relaying systems with best antenna selection under independent, but not necessarily identical distributed Nakagami-m fading. To gain further insights on the performance, the asymptotic approximation for OP, which reveals the diversity gain, is presented. We show that the diversity gain is solely determined by the fading severity parameters and increases with number of antennas at all nodes.
A one-dimensional ad hoc network with a single active source–destination pair is analyzed in terms of transport capacity, where each node uses multiple antennas. The analysis is based on using a multi-hop opportunistic routing transmission in the presence of fading. Specifically, the lower and upper bounds on the transport capacity are derived and their scaling law is analyzed as the node density, λ, is assumed to be infinitely large. The lower and upper bounds are shown to have the same scaling (ln λ)1/α, where α denotes the path-loss exponent. We also show that using multiple antennas at each node does not fundamentally change the scaling law.
Performance of CSMA/CA wireless communication is severely affected by hidden terminal (HT) problem that results in failure of carrier sense and causes packet error due to collision. However, no mathematical analysis method for the HT problem has been available that takes into account actual radio environments including both fading and capture effect. This paper presents an analysis method that enables to well predict the probability of successful communication (PSC) and communication efficiency for CSMA/CA unicast communication including the interaction of data and ACK packets. Analysis of the PSC with two-dimensional HT distribution makes it easy to understand the influence of HT location and carrier sense level. Also it is shown that there is considerable difference on the PSC between fading and fading-free environments. The obtained results as well as the proposed analysis method are quite useful in CSMA/CA network design for WLAN and sensor network applications.
Hoc PHAN Trung Quang DUONG Hans-Jürgen ZEPERNICK
The end-to-end performance of dual-hop multiple-input multiple-output (MIMO) decouple-and-forward relaying with orthogonal space-time block code (OSTBC) transmission over Nakagami-m fading is analyzed. By considering the multiple antennas at all nodes, we derive exact closed-form and asymptotic expressions for the outage probability and symbol error rate, which enables us to evaluate the exact performance and reveals the diversity gains of the considered system. In addition, the closed-form approximation and asymptotic expressions for the ergodic capacity are also derived. We show that OSTBC transmission over relay systems yields a unit order of multiplexing gain despite the fact that full diversity order, which is equal to the minimum fading severity between the two hops, is achieved.
Junfeng WANG Yue CUI Jianfu TENG Xiurong MA Zenghua ZHAO
In this letter, an improved statistical simulation model with a new parameter computation method is proposed for Rayleigh fading channels. Compared with the existing simulators, the proposed model yields much higher simulation efficiency, while it can still obtain adequate approximations of the desired statistical properties.
Cooperative relay selection, in which one of multiple relays is selected to retransmit the source signal to the destination, has received considerable attention in recent years, because it is a simple way to obtain cooperative diversity in wireless networks. The exact expression of outage probability for a decode-and-forward cooperative relay selection with multiple source and destination antennas over Rayleigh fading channels was recently derived in [9]. In this letter, we derive the exact expressions of outage probability and diversity-multiplexing tradeoff over independent and non-identically distributed Nakagami-m fading channels as an extension of [9]. We then analyze the effects of various parameters such as fading conditions, number of relays, and number of source and destination antennas on the outage probability.
Chanho YOON Hoojin LEE Joonhyuk KANG
In this letter, we provide an asymptotic error rate performance evaluation of space-time block codes from coordinate interleaved orthogonal designs (STBCs-CIODs), especially in shadowed Rayleigh fading channels. By evaluating a simplified probability density function (PDF) of Rayleigh and Rayleigh-lognormal channels affecting the STBC-CIOD system, we derive an accurate closed-form approximation for the tight upper and lower bounds on the symbol error rate (SER). We show that shadowing asymptotically affects coding gain only, and conclude that an increase in diversity order under shadowing causes slower convergence to asymptotic bound due to the relatively larger loss of coding gain. By comparing the derived formulas and Monte-Carlo simulations, we validate the accuracy of the theoretical results.
Satoshi YAMAZAKI David K. ASANO
In our previous research, to achieve unequal error protection (UEP), we proposed a scheme which encodes the data by randomly switching between several codes which use different signal constellations and showed the effectiveness in AWGN channels. In this letter, we propose our UEP system using MMSE-FDE for fast and selective fading by using the fact that importance levels are changed every few symbols, i.e., every block, in the proposed system. We confirmed the improvement in BER performance and the effectiveness of adaptive equalization for the proposed system in fading channels. Moreover, in fading channels we confirmed the validity of the theoretical tradeoff shown in static conditions.
Sangho NAM Kyunbyoung KO Daesik HONG
This letter presents a method for obtaining an exact average symbol error rate (ASER) of M-phase shift keying (M-PSK) transmission for the Nth best opportunistic amplify-and-forward (OAF) relay systems over Rayleigh fading channels. This approach begins with deriving the relay selection probability when a relay is selected as the Nth best one with respect to the received signal-to-noise ratio. We then derive the modified moment generating function (MGF) for the Nth best OAF relay systems by taking the given Nth best-relay selection probability into consideration. Based on the modified MGF, we derive the exact ASER which accurately explicates the Nth best OAF relay system characteristics. Simulation results confirm the exactness of the analysis results for M-PSK transmission with respect to the number of relays, the Nth best relay selection, and the relay position.
This study shows a fast simulation method of turbo codes over slow Rayleigh fading channels. The reduction of the simulation time is achieved by applying importance sampling (IS). The conventional IS method of turbo codes over Rayleigh fading channels focuses only on modification of additive white Gaussian noise (AWGN) sequences. The proposed IS method biases not only AWGNs but also channel gains of the Rayleigh fading channels. The computer runtime of the proposed method is about 1/5 of that of the conventional IS method on the evaluation of a frame error rate of 10-6. When we compare with the Monte Carlo simulation method, the proposed method needs only 1/100 simulation runtime under the condition of the same accuracy of the estimator.
This paper presents a novel 2-D (2-dimension) receiver that adopts the reception scheme to promote OFDM-DS-CDMA (orthogonal frequency division multiplexing multi-carrier coded-division multiple-access) system performance. The system model includes spread coding and a system block diagram of the 2-D receiver shown graphically with 3-D (three dimensions) plots. The analytical calculation of system performance for an OFDM-DS-CDMA system combined with the proposed receiver equipment is investigated. To evaluate the results from the channel fading effect is considered over the correlated fading environments. The correlated-Nakagami-m statistical distribution is taken into account in the evaluation. The results show that the number of users, the number of subcarriers and the fading channel correlation generally affect OFDM-DS-CDMA systems. The system is also influenced by the Doppler shift and the signal propagation environment (fading parameter).
Khuong HO VAN Vo Nguyen Quoc BAO
Underlay cognitive systems allow secondary users (SUs) to access the licensed band allocated to primary users (PUs) for better spectrum utilization with the power constraint imposed on SUs such that their operation does not harm the normal communication of PUs. This constraint, which limits the coverage range of SUs, can be offset by relaying techniques that take advantage of shorter range communication for lower path loss. Symbol error rate (SER) analysis of underlay cognitive relay systems over fading channel has not been reported in the literature. This paper fills this gap. The derived SER expressions are validated by simulations and show that underlay cognitive relay systems suffer a high error floor for any modulation level.
Switch-and-stay combining (SSC) is a simple diversity technique where a single radio frequency (RF) chain is connected to one of several antenna branches and stays there if the channel quality is satisfied or otherwise switches to a new branch. Compared with Selection Combining (SC), SSC requires less overhead in channel estimation and antenna selection feedback. In this paper, we analyze the performance of SSC in a time-correlated flat fading channel and with causal channel state information. We derive the general expressions for the distribution of the output signal-to-noise ratio (SNR), outage rate and average bit error rate (ABER) and then the analytical results are compared with the simulation results under the Jakes Rayleigh fading channel. Our results show that (1) For slowly varying channels, L branch SSC can achieve the full diversity order and the same outage rate as SC; (2) Increasing the number of antenna branches can improve the performance of SSC, however, the gain from adding antennas diminishes quickly as the channel variation speed increases. Moreover, to avoid the complexity in optimizing the fixed threshold, we also propose a simple adaptive SSC scheme which has almost the same ABER as the SSC with optimized fixed threshold.
We use network coding based on coded cooperation for the Two-Way Relay channel, where two nodes communicate with each other assisted by a third, relay node. We consider the time-division two-way relay channel without power control, which means the two users and the relay use the same transmission power. Using the proposed network coding approach, channel codes are used at both users and network coding is used at the relay. It is shown via simulation that the proposed scheme provides substantial coding gain in fading channels.
Some statistical characteristics, including the means and the cross-correlations, of frequency-selective Rician fading channels seen by orthogonal frequency division multiplexing (OFDM) subcarriers are derived in this paper. Based on a pairwise error probability analysis, the mean vector and the cross-correlation matrix are used to obtain an upper bound of the overall bit-error rate (BER) in a closed-form for coded OFDM signals with and without inter-carrier interference. In this paper, the overall BER is defined as the average BER of OFDM signals of all subcarriers obtained by considering their cross-correlations. Numerical examples are presented to compare the proposed upper bound of the overall BERs and the overall BERs obtained by simulations.
A. H. M. ALMAWGANI M. F. M. SALLEH
This paper presents a new unequal error protection (UEP) image transmission system that incorporates a Lifting Wavelet Transform (LWT) and Reed Solomon (RS) coded cooperation scheme to increase image transmission diversity, as well as save transmission bandwidth. Having a partner to assist direct communication increases the resilience of low frequency subband data against an error-prone fading channel. Low frequency subbands are partitioned into two sets of data and transmitted using the RS coded cooperation scheme. High frequency subbands data are transmitted directly to a base station. Results show that the new UEP image transmission system using LWT based RS coded cooperation scheme achieves diversity gains of around 10 dB, with channel SNR from 10 to 20 dB, compared with the image transmission system with non-cooperative system under slow Rayleigh fading channel for all levels of LWT decomposition. In addition, the new UEP image transmission system using LWT based RS coded cooperation scheme with one level of wavelet decomposition offers around 37.5% bandwidth gain (β), compared with the system without LWT, which incurs a reduction of 3 dB in reconstructed image quality.
Xuefang LIU Qinghai YANG Fenglin FU
In this letter, we investigate the Nth-best user selection scheme for amplify-and-forward cooperative systems over Rayleigh fading channels. We deduce the probability density function, the cumulative density function, and the moment generating function of the end-to-end signal-to-noise ratio of the system. Then, the respective closed-form expressions of the average symbol error probability and the outage probability at the destination are derived. The diversity order obtained in the scheme increases with user number but becomes less as the selection sequence number N increases. Simulation results verify the analytical results.
Kostas PEPPAS Christos DATSIKAS
In this letter, a study on the end-to-end outage performance of dual-hop non-regenerative relaying in the presence of co-channel interference is presented. We assume that both the desired and the interfering signals are subjected to Nakagami-m fading. Exact analytical expressions, as well as tight lower bounds of the end-to-end outage probability, are derived. An asymptotic expression for the outage probability at high values of Signal-to-Interference Ratio is also presented. Furthermore, we also propose the optimal power allocation for high values of Signal-to-Interference Ratio. Extensive numerically evaluation and computer simulation results are presented to verify the validity and the accuracy of the proposed analysis.
In this letter, we derive another exact bit error rate (BER) for decode-and-forward (DF) relay systems over Rayleigh fading channels. At first, our focus is on fixed-DF (FDF) relay schemes in which the probability density function (PDF) is derived based on error-events at relay nodes. Some insight into how erroneous detection and transmission at relay nodes affect both the combined signal-to-noise ratio (SNR) and the averaged BER is obtained, and cooperative diversity is observed from the closed-form BER expression. In addition, the developed analytical method is extended to adaptive-DF (ADF) schemes and the exact BER expressions are derived. Simulation results are finally presented to validate the analysis.
Hyun-Seok RYU Jun-Seok LEE Chung-Gu KANG
This letter provides a tight upper bound on the bit error rate (BER) over the Nakagami-m fading channel for the dual carrier modulation (DCM) scheme, which is adopted by the multi-band orthogonal frequency division multiplexing (MB-OFDM) ultra-wideband (UWB) system. Its tightness is verified with the existing result for Rayleigh fading channel, i.e., for m=1, which would be also valid for a more general fading environment.