The search functionality is under construction.

Keyword Search Result

[Keyword] file transmission(3hit)

1-3hit
  • The Complexity of an Optimal File Transfer Problem

    Yoshihiro KANEKO  Shoji SHINODA  

     
    LETTER-Graphs and Networks

      Vol:
    E82-A No:2
      Page(s):
    394-397

    A problem of obtaining an optimal file transfer on a file transmission net N is to consider how to distribute, with a minimum total cost, copies of a certain file of information from some vertices to others on N by the respective vertices' copy demand numbers. This paper proves such a problem to be NP-hard in general.

  • Nonadaptive Fault-Tolerant File Transmission in Rotator Graphs

    Yukihiro HAMADA  Feng BAO  Aohan MEI  Yoshihide IGARASHI  

     
    PAPER

      Vol:
    E79-A No:4
      Page(s):
    477-482

    A directed graph G = (V,E) is called the n-rotator graph if V = {a1a2an|a1a2an is a permutation of 1,2,,n} and E = {(a1a2an,b1b2bn)| for some 2 i n, b1b2bn = a2aia1ai+1an}. We show that for any pair of distinct nodes in the n-rotator graph, we can construct n - 1 disjoint paths, each length < 2n, connecting the two nodes. We propose a nonadaptive fault-tolerant file transmission algorithm which uses these disjoint paths. Then the probabilistic analysis of its reliability is given.

  • On an Optimum File Transfer on a File Transmission Net

    Yoshihiro KANEKO  Jiguang ZHANG  Shoji SHINODA  Kazuo HORIUCHI  

     
    LETTER

      Vol:
    E76-A No:7
      Page(s):
    1133-1138

    In a file transmission net N with vertex set V and arc set B, copies of a file J are distributed from a vertex to every vertex, subject to certain rules on file transmission. A cost of making one copy of J at each vertex µ is called a copying cost at µ, a cost of transmitting one copy of J through each arc (x, y) is called a transmission cost (x, y), and the number of copies of J demanded at each vertex u in N is called a copy demand at u. A scheduling of distributing copies of J from a vertex, say s, to every vertex on N is called a file transfer from s. The vertex s is called the source of the file transfer. A cost of a file transfer is defined, a file transfer from s is said to be optimal if its cost is not larger than the cost of any other file transfer from s, and an optimal file transfer from s is said to be optimum on N if its cost is not larger than that of an optimal file transfer from any other vertex. In this note, it is proved that an optimal file transfer from a vertex with a minimum copying cost is optimum on N, if there holds M U where M and U are the mother vertex set and the positive demand vertex set of N, respectively. Also it is shown by using an example that an optimal file transfer from a vertex with a minimum copying cost is not always optimum on N when M ⊃ U holds.