1-3hit |
Hiromichi YOSHIKAWA Nobuki HIRAMATSU Masamichi YONEHARA Hisamatsu NAKANO
In this paper, we applied the circuit synthesis theory of filters to the design of transmission-type metasurface cells and arbitrarily designed the amplitude and phase of the transmission and reflection by adjusting the resonant frequency and coupling coefficient. In addition, we successfully designed the phase of the unit cell by using the frequency conversion of filter theory. Moreover, we designed a refractive transmission-type metasurface plate with a novel cell structure that reacts to both polarizations. The prototype operated at the desired refraction angle, confirming the design theory.
Xinkai CHEN Guisheng ZHAI Toshio FUKUDA
This paper discusses the on-line frequency identification problem for a measured sinusoidal signal by using the adaptive method and filter theory. The proposed method is based on an identity between the sinusoidal signal and its second order derivative. For a set of chosen parameters, the proposed method is robust to the initial phase, the amplitude, and the frequency in a wide range. The convergence rate can be adjusted by the chosen parameters. The estimation error mainly depends on the frequency of the sinusoid, the measurement noise and a key design parameter.
Kazuhiro SHOUNO Yukio ISHIBASHI
A complex coefficient filter obtained by directly exchanging several reactance elements included in a real coefficient BPF for imaginary valued resistors is described. By using the proposed method, we obtain four varieties of complex coefficient filters. The stability problem is examined.