1-2hit |
Wireless Sensor Networks (WSNs) are randomly deployed in a hostile environment and left unattended. These networks are composed of small auto mouse sensor devices which can monitor target information and send it to the Base Station (BS) for action. The sensor nodes can easily be compromised by an adversary and the compromised nodes can be used to inject false vote or false report attacks. To counter these two kinds of attacks, the Probabilistic Voting-based Filtering Scheme (PVFS) was proposed by Li and Wu, which consists of three phases; 1) Key Initialization and assignment, 2) Report generation, and 3) En-route filtering. This scheme can be a successful countermeasure against these attacks, however, when one or more nodes are compromised, the re-distribution of keys is not handled. Therefore, after a sensor node or Cluster Head (CH) is compromised, the detection power and effectiveness of PVFS is reduced. This also results in adverse effects on the sensor network's lifetime. In this paper, we propose a Fuzzy Rule-based Key Redistribution Method (FRKM) to address the limitations of the PVFS. The experimental results confirm the effectiveness of the proposed method by improving the detection power by up to 13.75% when the key-redistribution period is not fixed. Moreover, the proposed method achieves an energy improvement of up to 9.2% over PVFS.
The wireless sensor network (WSN) is a technology that senses environmental information and provides appropriate services to users. There are diverse application areas for WSNs such as disaster prevention, military, and facility management. Despite the many prospective applications, WSN s are vulnerable to various malicious attacks. In false report attacks, a malicious attacker steals a few sensor nodes and obtains security materials such as authentication keys from the nodes. The attacker then injects false event reports to the network through the captured nodes. The injected false reports confuse users or deplete the limited energy of the nodes in the network. Many filtering schemes have been proposed to detect and remove false reports. In the statistical en route filtering (SEF) scheme, each node shares authentication keys selected from a global key pool. Due to the limited memory, each node is able to store only a small portion of the global key pool. Therefore, the routing paths of the event reports significantly affect the filtering (i.e., detecting) probability of false reports. In this paper, we propose a method to determine the routing paths of event reports both hop by hop and on demand at each node. In this method, each node chooses the next node on the path from the event source to the sink node based on the key indexes of its neighbor nodes. Experiments show that the proposed method is far more energy efficient than the SEF when the false traffic ratio (FTR) is ≥ 50% in the network.