1-1hit |
Kazuo KATO Satoshi YASUKAWA Kazunori SUZUKI Atsuo ISHIKAWA
The purpose of this study was to identify the key variables that determine the quality of the auditory environment, for the purposes of workplace auditory design and assessment. To this end, we characterized changes in oscillatory neural activity in electroencephalographic (EEG) data recorded from subjects who performed an intellectual activity while exposed to fluctuating ambient noise. Seven healthy men participated in the study. Subjects performed a verbal and spatial task that used the 3-back task paradigm to study working memory. During the task, subjects were presented with auditory stimuli grouped by increasing high-frequency content: (1) a sound with frequencies similar to Brownian noise and no modulation; (2) an amplitude-modulated sound with frequencies similar to white noise; (3) amplitude-modulated pink noise; and (4) amplitude-modulated Brownian noise. Upon presentation, we observed a characteristic change in three EEG bands: theta (4-8Hz), alpha (8-13Hz), and beta (13-30Hz). In particular, a frequency-dependent enhancement and reduction of power was observed in the theta and beta bands, respectively.