The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] frequent/infrequent item sets(1hit)

1-1hit
  • A Randomness Based Analysis on the Data Size Needed for Removing Deceptive Patterns

    Kazuya HARAGUCHI  Mutsunori YAGIURA  Endre BOROS  Toshihide IBARAKI  

     
    PAPER-Algorithm Theory

      Vol:
    E91-D No:3
      Page(s):
    781-788

    We consider a data set in which each example is an n-dimensional Boolean vector labeled as true or false. A pattern is a co-occurrence of a particular value combination of a given subset of the variables. If a pattern appears frequently in the true examples and infrequently in the false examples, we consider it a good pattern. In this paper, we discuss the problem of determining the data size needed for removing "deceptive" good patterns; in a data set of a small size, many good patterns may appear superficially, simply by chance, independently of the underlying structure. Our hypothesis is that, in order to remove such deceptive good patterns, the data set should contain a greater number of examples than that at which a random data set contains few good patterns. We justify this hypothesis by computational studies. We also derive a theoretical upper bound on the needed data size in view of our hypothesis.