1-2hit |
Chang Sik SON Yoon-Nyun KIM Kyung-Ri PARK Hee-Joon PARK
A scheme for designing a hierarchical fuzzy classification system with a different number of fuzzy partitions based on statistical characteristics of the data is proposed. To minimize the number of misclassified patterns in intermediate layers, a method of fuzzy partitioning from the defuzzified outputs of previous layers is also presented. The effectiveness of the proposed scheme is demonstrated by comparing the results from five datasets in the UCI Machine Learning Repository.
Elsaid Mohamed ABDELRAHIM Takashi YAHAGI
In two- or more-dimensional systems where the components of the sample data are strongly correlated, it is not proper to divide the input space into several subspaces without considering the correlation. In this paper, we propose the usage of the method of principal component in order to uncorrelate and remove any redundancy from the input space of the adaptive neuro-fuzzy inference system (ANFIS). This leads to an effective partition of the input space to the fuzzy model and significantly reduces the modeling error. A computer simulation for two frequently used benchmark problems shows that ANFIS with the uncorrelation process performs better than the original ANFIS under the same conditions.