The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] global illumination(5hit)

1-5hit
  • An Efficient Soft Shadow Mapping for Area Lights in Various Shapes and Colors

    Youngjae CHUN  Kyoungsu OH  

     
    LETTER-Computer Graphics

      Pubricized:
    2016/11/11
      Vol:
    E100-D No:2
      Page(s):
    396-400

    Shadow is an important effect that makes virtual 3D scenes more realistic. In this paper, we propose a fast and correct soft shadow generation method for area lights of various shapes and colors. To conduct efficient as well as accurate visibility tests, we exploit the complexity of shadow and area light color.

  • A Contrast Enhancement Method for HDR Image Using a Modified Image Formation Model

    Byoung-Ju YUN  Hee-Dong HONG  Ho-Hyoung CHOI  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E95-D No:4
      Page(s):
    1112-1119

    Poor illumination and viewing conditions have negativeinfluences on the quality of an image, especially the contrast of the dark and bright region. Thus, captured and displayed images usually need contrast enhancement. Histogram-based or gamma correction-based methods are generally utilized for this. However, these methods are global contrast enhancement method, and since the sensitivity of the human eye changes locally according to the position of the object and the illumination in the scene, the global contrast enhancement methods have a limit. The spatial adaptive method is needed to overcome these limitations and it has led to the development of an integrated surround retinex (ISR), and estimation of dominant chromaticity (EDC) methods. However, these methods are based on Gray-World Assumption, and they use a general image formation model, so the color constancy is known to get poor results, shown through graying-out, halo-artifacts (ringing effects), and the dominated color. This paper presents a contrast enhancement method using a modified image formation model in which the image is divided into three components: global illumination, local illumination and reflectance. After applying the power constant value to control the contrast in the resulting image, the output image is obtained from their product to avoid or minimize a color distortion, based on the sRGB color representation. The experimental results show that the proposed method yields better performances than conventional methods.

  • A Method for Fast Rendering of Caustics from Refraction by Transparent Objects

    Kei IWASAKI  Fujiichi YOSHIMOTO  Yoshinori DOBASHI  Tomoyuki NISHITA  

     
    PAPER

      Vol:
    E88-D No:5
      Page(s):
    904-911

    Caustics are patterns of light focused by reflective or refractive objects. Because of their visually fascinating patterns, several methods have been developed to render caustics. We propose a method for the quick rendering of caustics formed by refracted and converged light through transparent objects. First, in the preprocess, we calculate sampling rays incident on each vertex of the object, and trace the rays until they leave the object taking refraction into account. The position and direction of each ray that finally transmits the transparent object are obtained and stored in a lookup table. Next, in the rendering process, when the object is illuminated, the positions and directions of the rays leaving the object are calculated using the lookup table. This makes it possible to render refractive caustics due to transparent objects at interactive frame rates, allowing us to change the light position and direction, and translate and rotate the object.

  • The Object-Space Parallel Processing of the Multipass Rendering Method on the (Mπ)2 with a Distributed-Frame Buffer System

    Hitoshi YAMAUCHI  Takayuki MAEDA  Hiroaki KOBAYASHI  Tadao NAKAMURA  

     
    PAPER-Computer Architecture

      Vol:
    E80-D No:9
      Page(s):
    909-918

    The multipass rendering method based on the global illumination model can generate the most photo-realistic images. However, since the multipass rendering method is very time consuming, it is impractical in the industrial world. This paper discusses a massively parallel processing approach to fast image synthesis by the multipass rendering method. Especially, we focus on the performance evaluation of the view-dependent object-space parallel processing on the (Mπ)2 which has been proposed in our previous paper. We also propose two kinds of distributed frame buffer system named cached frame buffer and multistage-interconnected frame buffer. These frame buffer systems can solve the access conflict problem on the frame buffer. The simulation results show that the (Mπ)2 has a scalable performance. For example, the (Mπ)2 with more than 4000 processing elements can achieve an efficiency of over 50%. We also show that both of the proposed distributed frame buffer systems can relieve the overhead due to frame buffer access in the (Mπ)2 in the case that a large number of high-performance processing elements are adopted in the system.

  • (Mπ)2: A Hierarchical Parallel Processing System for the Multipass Rendering Method

    Hiroaki KOBAYASHI  Hitoshi YAMAUCHI  Yuichiro TOH  Tadao NAKAMURA  

     
    PAPER-Architectures

      Vol:
    E79-D No:8
      Page(s):
    1055-1064

    This paper proposes a hierarchical parallel processing system for the multipass rendering method. The multipass rendering method based on the integration of radiosity and ray-tracing can synthesize photo-realistic images. However, the method is also computationally expensive. To accelerate the multipass rendering method, the system, called (Mπ)2, employs two kinds of parallel processing schemes. As a coarse-grain parallel processing, object-space parallel processing with multiple processing elements based on the object-space subdivision is adapted, and each processing element (PE) is equipped with multiple pipelined units for a fine-grain parallel processing. To balance load among the system, static load balancing at the PE level and dynamic load balancing at the pipelined unit level within the PE are introduced. Especially, we propose a novel static load allocation scheme, skewed-distributed allocation, which can effectively distribute a three-dimensional object space to one- or two-dimensional processor configuration of the (Mπ)2 system. Simulation experiments show that the two-dimensional (Mπ)2 systems with the skewed-distributed allocation outperform the three-dimensional systems with the non-skewed distributed allocation. Since lower dimensional systems can be built at a lower cost than higher dimensional systems, the skewed-distributed allocation will be meritorious. Besides, by the combination of static load balancing by the skewed-distributed allocation and the dynamic load balancing by dynamic ray allocation within each PE, the system performance can be further boosted. We also propose a cached frame buffer system to relieve access collision on a frame buffer.