The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] h.264(137hit)

61-80hit(137hit)

  • VLSI Oriented Fast Motion Estimation Algorithm Based on Pixel Difference, Block Overlapping and Motion Feature Analysis

    Yiqing HUANG  Qin LIU  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER-Realization

      Vol:
    E92-A No:8
      Page(s):
    1986-1999

    One VLSI friendly fast motion estimation (ME) algorithm is proposed in this paper. Firstly, theoretical analysis shows that image rich of sharp edges and texture is regarded as high frequency abundant image and macroblocks (MBs) in such image will express large pixel difference. In our paper, we apply adaptive subsampling method during ME process based on pixel difference analysis, so the computation complexity of full pixel pattern can be reduced. Secondly, statistic analysis shows that for MBs with static feature, the ratio of selecting previous reference frame as best one is very high and multiple reference frame technique is not required for these MBs. Based on this analysis, we give out a block overlapping method to pick out static MBs and apply MRF elimination process. Thirdly, since many redundant search positions exist in MB with small motion trend and large search range is only contributive to MB with big motion, we extract motion feature after ME on first reference frame and use it to adjust search range for rest ME process. So, the computation complexity of redundant search positions is eliminated. Experimental results show that, compared with hardware friendly full search algorithm, our proposed algorithm can reduce 71.09% to 95.26% ME time with negligible video quality degradation. Moreover, our fast algorithm can be combined with existing fast ME algorithms like UMHexagon method for further reduction in complexity and it is friendly to hardware implementation.

  • Coding Complexity Prediction for H.264/AVC Rate Control

    Yimin ZHOU  Ling TIAN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:8
      Page(s):
    1592-1595

    Coding complexity is a crucial parameter in rate control scheme. Traditional measures for coding complexity are based on statistic and estimation. This way may cause the imprecise coding complexity and finally bring inaccurate output bit rate more or less. To resolve this problem, we propose a hypothetical virtual coding complexity to imitate the real coding complexity. Based on the proposed coding complexity measure, a novel rate control algorithm is proposed either. Experimental results and analysis show that the proposed mearsure for coding complexity is effective, and our scheme outperforms the JVT-W042 solution by providing more accurate QP prediction, reducing frame skipping, and improving visual quality.

  • H.264 Fast Inter-Mode Selection Based on Coded Block Patterns

    Shih-Hsuan YANG  Bo-Yuan CHEN  Kuo-Hsin WANG  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:6
      Page(s):
    1324-1327

    A new H.264 fast inter-mode decision algorithm based on coded block patterns is presented. Compared to the exhaustive mode search, the proposed method achieves an average 57 % reduction in computation time with negligible degradation in visual quality. The speed and rate-distortion performance is comparable to known fast algorithms that involve more elaborate mechanisms.

  • An Efficient Encryption and Key Management Scheme for Layered Access Control of H.264/Scalable Video Coding

    Su-Wan PARK  Sang Uk SHIN  

     
    PAPER-Contents Protection

      Vol:
    E92-D No:5
      Page(s):
    851-858

    This paper proposes a new selective encryption scheme and a key management scheme for layered access control of H.264/SVC. This scheme encrypts three domains in hierarchical layers using different keys: intra prediction modes, motion vector difference values and sign bits of texture data. The proposed scheme offers low computational complexity, low bit-overhead, and format compliance by utilizing the H.264/SVC structure. It provides a high encryption efficiency by encrypting domains selectively, according to each layer type in the enhancement-layer. It also provides confidentiality and implicit authentication using keys derived in the proposed key management scheme for encryption. Simulation results show the effectiveness of the proposed scheme.

  • Residual DPCM about Motion Compensated Residual Signal for H.264 Lossless Coding

    Ki-Hun HAN  Kamisetty R. RAO  Yung-Lyul LEE  

     
    LETTER-Image

      Vol:
    E92-A No:5
      Page(s):
    1386-1389

    In this letter, a new Inter lossless coding method based on a residual DPCM (Differential Pulse Code Modulation) is proposed to improve compression ratio in the H.264 standard. Since the spatial correlation in a residual block can be further exploited among the residual signals after motion estimation/compensation, horizontal or vertical DPCM in the residual signals can be applied to further reduce the magnitudes of the residual signals. The proposed method reduces the average bitrates of 3.5% compared with the Inter lossless coding of the H.264 standard.

  • Hardware-Oriented Early Detection Algorithms for 44 and 88 All-Zero Blocks in H.264

    Qin LIU  Yiqing HUANG  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1063-1071

    H.264 is the latest HDTV video compression standard, which provides a significant improvement in coding efficiency at the cost of huge computation complexity. After transform and quantization, if all the coefficients of the block's residue data are zero, this block is called all-zero block (AZB). Provided that an AZB can be detected early, the process of transform and quantization on an AZB can be skipped, which reduces significant redundant computations. In this paper, a theoretical analysis is performed for the sufficient condition for AZB detection. As a result, a partial sum of absolute difference (SAD) based 44 AZB detection algorithm is derived. And then, a hardware-oriented AZB detection algorithm is proposed by modifying the order of SAD calculation. Furthermore, a quantization parameter (QP) oriented 88 AZB detection algorithm is proposed according to the AZB's statistical analysis. Experimental results show that the proposed algorithm outperforms the previous methods in all cases and achieves major improvement of computation reduction in the range from 6.7% to 42.3% for 44 blocks, from 0.24% to 79.48% for 88 blocks. The computation reduction increases as QP increases.

  • Adaptive Scan Pattern for Quantized Coefficients in Intra Coding of H.264

    Young-Joe YOO  Seyoon JEONG  Jong-Ki HAN  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E92-D No:4
      Page(s):
    750-752

    Various scanning algorithms have been proposed to enhance the performance of intra prediction of H.264 codec. In this paper, an adaptive scanning scheme is proposed to achieve the entropy coding gain in intra coding, where scanning patterns are updated based on the probabilistic distribution of quantized coefficients of previous macroblocks so that the consecutive zeros are located at the rear part of the scanned data stream. Simulation results show that the average bit-rate reduction is about 2.15% in common test conditions.

  • Design of a High-Throughput CABAC Encoder

    Chia-Cheng LO  Ying-Jhong ZENG  Ming-Der SHIEH  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E92-D No:4
      Page(s):
    681-688

    Context-based Adaptive Binary Arithmetic Coding(CABAC) is one of the algorithmic improvements that the H.264/AVC standard provides to enhance the compression ratio of video sequences. Compared with the context-based adaptive variable length coding (CAVLC), CABAC can obtain a better compression ratio at the price of higher computation complexity. In particular, the inherent data dependency and various types of syntax elements in CABAC results in a dramatically increased complexity if two bins obtained from binarized syntax elements are handled at a time. By analyzing the distribution of binarized bins in different video sequences, this work shows how to effectively improve the encoding rate with limited hardware overhead by allowing only a certain type of syntax element to be processed two bins at a time. Together with the proposed context memory management scheme and range renovation method, experimental results reveal that an encoding rate of up to 410 M-bin/s can be obtained with a limited increase in hardware requirement. Compared with related works that do not support multi-symbol encoding, our development can achieve nearly twice their throughput rates with less than 25 % hardware overhead.

  • An Ultra-Low Bandwidth Design Method for MPEG-2 to H.264/AVC Transcoding

    Xianghui WEI  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER

      Vol:
    E92-A No:4
      Page(s):
    1072-1079

    Motion estimation (ME) is a computation and data intensive module in video coding system. The search window reuse methods play a critical role in bandwidth reduction by exploiting the data locality in video coding system. In this paper, a search window reuse method (Level C+) is proposed for MPEG-2 to H.264/AVC transcoding. The proposed method is designed for ultra-low bandwidth application, while the on-chip memory is not a main constraining factor. By loading search window for the motion estimation unit (MEU) and applying motion vector clipping processing, each MB in MEU can utilize both horizontal and vertical search reuse. A very low bandwidth level (Rα<2) can be achieved with an acceptable on-chip memory.

  • Multiuser Distortion Management Scheme for H.264 Video Transmission in OFDM Systems

    Hojin HA  Young Yong KIM  

     
    PAPER-Network

      Vol:
    E92-B No:3
      Page(s):
    850-857

    In this paper, we propose a subcarrier resource allocation algorithm for managing the video quality degradation for multiuser orthogonal frequency division multiplex (OFDM) systems. The proposed algorithm exploits the unequal importance existing in different picture types for video coding and the diversity of subcarriers for multiuser systems. A model-based performance metric is first derived considering the error concealment and error propagation properties of the H.264 video coding structure. Based on the information on video quality enhancement existing in a packet to be transmitted, we propose the distortion management algorithm for balancing the subcarriers and power usages for each user and minimizing the overall video quality degradation. In the simulation results, the proposed algorithm demonstrates a more gradual video quality degradation for different numbers of users compared with other resource allocation schemes.

  • Rate Controlling in H.264/AVC Using Subjective Quality of Video and Evolution Strategy

    Lasith YASAKETHU  Steven ADEDOYIN  Anil FERNANDO  Ahmet M. KONDOZ  

     
    PAPER

      Vol:
    E92-A No:3
      Page(s):
    808-815

    In this paper, we propose a rate control technique for H.264/AVC using subjective quality of video for off line video coding. We propose to use Video Quality Metric (VQM) with an evolution strategy algorithm, which is capable of identifying the best possible quantization parameters for each frame/macroblock to encode the video sequence such that it would maximize the subjective quality of the entire video sequence subjected to the target bit rate. Simulation results suggest that the proposed technique can improve the RD performance of the H.264/AVC codec significantly. With the proposed technique, up to 40% bit rate reduction can be achieved at the same video quality. Furthermore, results show that the proposed technique can improve the subjective quality of the encoded video significantly for video sequences especially with high motion.

  • Image Resizing in an Arbitrary Transform Domain

    Won Ha Kim   Hyung Suk OH  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E92-B No:1
      Page(s):
    346-349

    This paper develops a methodology for resizing image resolutions in an arbitrary orthogonal block transform domain. To accomplish this, we represent the procedures resizing images in an orthogonal transform domain in the form of matrix multiplications from which the matrix scaling the image resolutions is produce. The experiments showed that the proposed method produces reliable performance without increasing the computational complexity, compared to conventional methods when applied to various transforms.

  • Cache Optimization for H.264/AVC Motion Compensation

    Sangyong YOON  Soo-Ik CHAE  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E91-D No:12
      Page(s):
    2902-2905

    In this letter, we propose a cache organization that substantially reduces the memory bandwidth of motion compensation (MC) in the H.264/AVC decoders. To reduce duplicated memory accesses to P and B pictures, we employ a four-way set-associative cache in which its index bits are composed of horizontal and vertical address bits of the frame buffer and each line stores an 8 2 pixel data in the reference frames. Moreover, we alleviate the data fragmentation problem by selecting its line size that equals the minimum access size of the DDR SDRAM. The bandwidth of the optimized cache averaged over five QCIF IBBP image sequences requires only 129% of the essential bandwidth of an H.264/AVC MC.

  • High Throughput VLSI Architecture of a Fast Mode Decision Algorithm for H.264/AVC Intra Encoding

    Tianruo ZHANG  Guifen TIAN  Takeshi IKENAGA  Satoshi GOTO  

     
    PAPER-Embedded, Real-Time and Reconfigurable Systems

      Vol:
    E91-A No:12
      Page(s):
    3630-3637

    Intra coding in H.264/AVC has significantly enhanced video compression efficiency. However, computation complexity increases by the rate-distortion (RD) based mode decision. This paper proposes a novel fast mode decision algorithm in H.264/AVC intra prediction and its VLSI architecture. A novel edge-detection pattern is proposed and both edge-detection technique and spatial mode prediction technique are combined together to reduce the number of intra 44 candidate modes from 9 to an average of 2.50. VLSI architecture of intra mode decision module is designed with TSMC 0.18 µm CMOS technology. The maximum frequency of 285 MHz is achieved and 13.1k NAND gates are required. High frequency, efficient processing cycle reduction and small area make this design to be an excellent accelerator for HDTV 1080p@30 fps real time encoder.

  • Adaptive Intra Refresh for Robust H.264/AVC Transmission

    Bin SONG  Hao QIN  Xiaobing JIANG  Linhua MA  

     
    LETTER-Multimedia Systems for Communications

      Vol:
    E91-B No:11
      Page(s):
    3796-3798

    An intra refresh matrix, which models the importance of each macroblock, is first created. This matrix can be used to decide the coding mode of the macroblocks. The proposed technique can greatly improve the decoded video quality over the variable and error-prone channel with high packet loss rate.

  • Macroblock Feature Based Complexity Reduction for H.264/AVC Motion Estimation

    Yiqing HUANG  Qin LIU  Takeshi IKENAGA  

     
    PAPER-Video Coding

      Vol:
    E91-A No:10
      Page(s):
    2934-2944

    In H.264/AVC standard, many new techniques such as variable block size (VBS) and multiple reference frame (MRF) are used in motion estimation (ME) part to achieve superior coding performance. However, the use of new techniques will also cause great burden on computation complexity, which leads to problems in low power hardware implementation. Many software based fast ME algorithms are proposed to reduce complexity. For real-time hardwired encoder, the huge throughput of fractional motion estimation (FME) and integer motion estimation (IME) makes pipeline stage a must. In this case, IME is arranged in a single stage, which deteriorates the efficiency of many software based algorithms. Based on the hardware data flow, this paper provides a complexity reduction algorithm which speeds up ME procedure through three schemes. Firstly, the proposed algorithm executes similarity analysis to detect big mode MB and apply early termination in IME stage. Secondly, for normal MB, motion feature is extracted after IME of each frame and a 6-ring based search range adjustment scheme is introduced to remove redundant search positions. Thirdly, for MBs which have large motion feature, the pixel difference is very small due to the blur effect on video sensor. So, we use subsampling technique to reduce computation complexity for such MBs. Experimental results show that, compared with hardware friendly full search algorithm, the proposed fast ME algorithm can reduce 52.63% to 83.21% ME time with negligible video quality degradation. Furthermore, since the proposed algorithm works in a hardware friendly way, it can be embedded into 3-stage real-time hardwired video encoder to achieve low power design.

  • Variable Block Size Motion Vector Retrieval Schemes for H.264 Inter Frame Error Concealment

    Lei WANG  Jun WANG  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER-Video Coding

      Vol:
    E91-A No:10
      Page(s):
    2945-2953

    With the ubiquitous application of Internet and wireless networks, H.264 video communication becomes more and more common. However, due to the high-efficiently predictive coding and the variable length entropy coding, it is more sensitive to transmission errors. The current error concealment (EC) scheme, which utilizes the spatial and temporal correlations to conceal the corrupted region, produces unsatisfied boundary artifacts. In this paper, first we propose variable block size error concealment (VBSEC) scheme inspired by variable block size motion estimation (VBSME) in H.264. This scheme provides four EC modes and four sub-block partitions. The whole corrupted macro-block (MB) will be divided into variable block size adaptively according to the actual motion. More precise motion vectors (MV) will be predicted for each sub-block. Then MV refinement (MVR) scheme is proposed to refine the MV of the heterogeneous sub-block by utilizing three step search (TSS) algorithm adaptively. Both VBSEC and MVR are based on our directional spatio-temporal boundary matching algorithm (DSTBMA). By utilizing these schemes, we can reconstruct the corrupted MB in the inter frame more accurately. The experimental results show that our proposed scheme can obtain better objective and subjective EC quality, respectively compared with the boundary matching algorithm (BMA) adopted in the JM11.0 reference software, spatio-temporal boundary matching algorithm (STBMA) and other comparable EC methods.

  • Alternative Transform for Residual Blocks in H.264/AVC

    Sung-Chang LIM  Dae-Yeon KIM  Yung-Lyul LEE  

     
    LETTER-Image

      Vol:
    E91-A No:8
      Page(s):
    2272-2276

    In this paper, an alternative transform based on the correlation of the residual block is proposed for the improvement of the H.264/AVC coding efficiency. A discrete sine transform is used alternately with a discrete cosine transform in order to greatly compact the energy of the signal when the correlation coefficients of the signal are in the range of -0.5 to 0.5. Therefore, the discrete sine transform is suggested to be used in conjunction with the discrete cosine transform in H.264/AVC. The alternative transform selecting the optimal transform between two transforms by using rate-distortion optimization shows a coding gain compared with H.264/AVC. The proposed method achieves a PSNR gain of up to 1.0 dB compared to JM 10.2 at relatively high bitrates.

  • Low-Complexity Watermarking Based on Entropy Coding in H.264/AVC

    Young-Ho SEO  Hyun-Jun CHOI  Chang-Yeul LEE  Dong-Wook KIM  

     
    PAPER-Cryptography and Information Security

      Vol:
    E91-A No:8
      Page(s):
    2130-2137

    This paper is to propose a digital watermarking to protect the ownership of a video content which is compressed by H.264/AVC main profile. This scheme intends to be performed during the CABAC (Context-based Adaptive Binary Arithmetic Coding) process which is the entropy coding of the main profile. It uses the contexts extracted during the context modeling process of CABAC to position the watermark bits by simply checking the context values and determining the coefficients. The watermarking process is also as simple as replacing the watermark bit with the LSB (Least Significant Bit) of the corresponding coefficient to be watermarked. Experimental results from applying this scheme and attacking in various ways such as blurring, sharpening, cropping, Gaussian noise addition, and geometrical modification showed that the watermark embedded by this scheme has very high imperceptibility and robustness to the attacks. Thus, we expect it to be used as a good watermarking scheme, especially in the area that the watermarking should be performed during the compression process with requiring minimal amount of process for watermarking.

  • Content-Aware Fast Motion Estimation for H.264/AVC

    Zhenyu LIU  Satoshi GOTO  Takeshi IKENAGA  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1944-1952

    The key to high performance in video coding lies on efficiently reducing the temporal redundancies. For this purpose, H.264/AVC coding standard has adopted variable block size motion estimation on multiple reference frames to improve the coding gain. However, the computational complexity of motion estimation is also increased in proportion to the product of the reference frame number and the intermode number. The mathematical analysis in this paper reveals that the prediction errors mainly depend on the image edge gradient amplitude and quantization parameter. Consequently, this paper proposes the image content based early termination algorithm, which outperforms the original method adopted by JVT reference software, especially at high and moderate bit rates. In light of rate-distortion theory, this paper also relates the homogeneity of image to the quantization parameter. For the homogenous block, its search computation for futile reference frames and intermodes can be efficiently discarded. Therefore, the computation saving performance increases with the value of quantization parameter. These content based fast algorithms were integrated with Unsymmetrical-cross Multihexagon-grid Search (UMHexagonS) algorithm to demonstrate their performance. Compared to the original UMHexagonS fast matching algorithm, 26.14-54.97% search time can be saved with an average of 0.0369 dB coding quality degradation.

61-80hit(137hit)