1-6hit |
Gihyoun LEE Sung Dae NA KiWoong SEONG Jin-Ho CHO Myoung Nam KIM
Because wavelet transforms have the characteristic of decomposing signals that are similar to the human acoustic system, speech enhancement algorithms that are based on wavelet shrinkage are widely used. In this paper, we propose a new speech enhancement algorithm of hearing aids based on wavelet shrinkage. The algorithm has multi-band threshold value and a new wavelet shrinkage function for recursive noise reduction. We performed experiments using various types of authorized speech and noise signals, and our results show that the proposed algorithm achieves significantly better performances compared with other recently proposed speech enhancement algorithms using wavelet shrinkage.
Xia WANG Ruiyu LIANG Qingyun WANG Li ZHAO Cairong ZOU
In this letter, an effective acoustic feedback cancellation algorithm is proposed based on the normalized sub-band adaptive filter (NSAF). To improve the confliction between fast convergence rate and low misalignment in the NSAF algorithm, a variable step size is designed to automatically vary according to the update state of the filter. The update state of the filter is adaptively detected via the normalized distance between the long term average and the short term average of the tap-weight vector. Simulation results demonstrate that the proposed algorithm has superior performance in terms of convergence rate and misalignment.
Keunsang LEE Younghyun BAEK Dongwook KIM Junil SOHN Youngcheol PARK
This paper presents an adaptive feedback canceller (AFC) based on a pseudo affine projection (PAP) algorithm that can provide fast and stable adaptation to the time-varying environment. The proposed algorithm utilizes the adaptive linear prediction (LP) to obtain the LP coefficients of input signal model and the inverse gain filter (IGF) to alleviate the effect of compensation gain. As a result, when the input is model as an AR signal, the proposed algorithm satisfies the condition for having an almost unbiased estimatie of the feedback path and then its performance is relatively independent of the gain setting of hearing aids. Simulation results showed that the proposed algorithm is capable of obtaining unbaised feedback path estimates and high speech quality.
Qingyun WANG Xinchun JI Ruiyu LIANG Li ZHAO
In the traditional microphone array signal processing, the performance degrades rapidly when the array aperture decreases, which has been a barrier restricting its implementation in the small-scale acoustic system such as digital hearing aids. In this work a new compressed sampling method of miniature microphone array is proposed, which compresses information in the internal of ADC by means of mixture system of hardware circuit and software program in order to remove the redundancy of the different array element signals. The architecture of the method is developed using the Verilog language and has already been tested in the FPGA chip. Experiments of compressed sampling and reconstruction show the successful sparseness and reconstruction for speech sources. Owing to having avoided singularity problem of the correlation matrix of the miniature microphone array, when used in the direction of arrival (DOA) estimation in digital hearing aids, the proposed method has the advantage of higher resolution compared with the traditional GCC and MUSIC algorithms.
Hongsub AN Hyeonmin SHIM Jangwoo KWON Sangmin LEE
Acoustic feedback is a major complaint of hearing aid users. Adaptive filters are a common method for suppressing acoustic feedback in digital hearing aids. In this letter, we propose a new variable step-size algorithm for normalized least mean square and an affine projection algorithm to combine with a variable step-size affine projection algorithm and global speech absence probability in an adaptive filter. The computer simulation used to test the proposed algorithm results in a lower misalignment error than the comparison algorithm at a similar convergence rate. Therefore, the proposed algorithm suggests an effective solution for the feedback suppression system of digital hearing aids.
Sang Min LEE In Young KIM Young Cheol PARK
Howling is very annoying problem to the hearing-aid users and it limits the maximum usable gain of hearing aids. We propose a new feedback cancellation system by inserting a time-varying decorrelation filter in the forward path. We use a second-order all-pass filter with control parameters whose time variation is implemented using a low-frequency modulator. A noticeable reduction of weight-vector misalignment is achievable using our proposed method.