The search functionality is under construction.

Keyword Search Result

[Keyword] high speed camera(5hit)

1-5hit
  • Arc Length Just Before Extinction of Break Arcs Magnetically Blown-Out by an Appropriately Placed Permanent Magnet in a 200V-500VDC/10A Resistive Circuit

    Yuta KANEKO  Junya SEKIKAWA  

     
    PAPER

      Pubricized:
    2020/07/03
      Vol:
    E103-C No:12
      Page(s):
    698-704

    Silver electrical contacts were separated at constant opening speed in a 200V-500VDC/10A resistive circuit. Break arcs were extinguished by magnetic blowing-out with transverse magnetic field of a permanent magnet. The permanent magnet was appropriately located to simplify the lengthened shape of the break arcs. Magnetic flux density of the transverse magnetic field was varied from 20 to 140mT. Images of the break arcs were observed from the horizontal and vertical directions using two high speed cameras simultaneously. Arc length just before extinction was analyzed from the observed images. It was shown that shapes of the break arcs were simple enough to trace the most part of paths of the break arcs for all experimental conditions owing to simplification of the shapes of the break arcs by appropriate arrangement of the magnet. The arc length increased with increasing supply voltage and decreased with increasing magnetic flux density. These results will be discussed in the view points of arc lengthening time and arc lengthening velocity.

  • Arc Duration and Dwell Time of Break Arcs Magnetically Blown-out in Nitrogen or Air in a 450VDC/10A Resistive Circuit

    Akinori ISHIHARA  Junya SEKIKAWA  

     
    BRIEF PAPER

      Vol:
    E101-C No:9
      Page(s):
    699-702

    Electrical contacts are separated at constant speed and break arcs are generated in nitrogen or air in a 200V-450VDC/10A resistive circuit. The break arcs are extinguished by magnetic blow-out. Arc duration for the silver and copper contact pairs is investigated for each supply voltage. Following results are shown. The arc duration for Cu contacts in nitrogen is the shortest. For Cu contacts, the arc dwell time in air was considerably longer than that of nitrogen. For Ag contacts, the arc duration in nitrogen was almost the same as that in air.

  • Restriction on Motion of Break Arcs Magnetically Blown-Out by Surrounding Walls in a 450VDC/10A Resistive Circuit

    Keisuke KATO  Junya SEKIKAWA  

     
    PAPER

      Vol:
    E99-C No:9
      Page(s):
    1009-1015

    Silver electrical contacts are separated at constant speed and break arcs are generated between them in a 200V-450VDC and 10A resistive circuit. The motion of the break arcs is restricted by some surrounding alumina plates. Transverse magnetic field of a permanent magnet is applied to the break arcs. Changing the supply voltage and the height of a wall located at the upper side of the break arcs, the arc lengthening time and motion of the break arcs are investigated. As a result, the higher supply voltage causes an increase of the arc lengthening time. The arc lengthening time increases significantly when the break arcs expand into the whole of the surrounding walls.

  • Occurrence of Reignitions of Break Arcs When Moving Range of Arc Spots are Restricted within the Contact Surfaces

    Junya SEKIKAWA  

     
    PAPER

      Vol:
    E99-C No:9
      Page(s):
    992-998

    Silver contacts are separated at constant speed and break arcs are generated in a 300V-450V DC and 10A resistive circuit. The transverse magnetic field of a permanent magnet is applied to the break arcs. Motion of the break arcs, arc duration and the number of reignitions are investigated when side surfaces of the contacts are covered with insulator pipes. Following results are shown. The motion of the break arcs and the arc duration when the anode is covered with the pipe are the same as those without pipes. When the cathode is covered with the pipe, the motion of break arcs change from that without the pipes and reignitions occur more frequently. The arc duration becomes longer than that without the pipes because of the occurrence of reignitions. The number of reignition increases with increasing the supply voltage in 300V-400V. The period of occurrence of the reignition with pipes is shorter than that when the cathode is covered with the pipe.

  • Facial Micro-Expression Detection in Hi-Speed Video Based on Facial Action Coding System (FACS)

    Senya POLIKOVSKY  Yoshinari KAMEDA  Yuichi OHTA  

     
    PAPER-Pattern Recognition

      Vol:
    E96-D No:1
      Page(s):
    81-92

    Facial micro-expressions are fast and subtle facial motions that are considered as one of the most useful external signs for detecting hidden emotional changes in a person. However, they are not easy to detect and measure as they appear only for a short time, with small muscle contraction in the facial areas where salient features are not available. We propose a new computer vision method for detecting and measuring timing characteristics of facial micro-expressions. The core of this method is based on a descriptor that combines pre-processing masks, histograms and concatenation of spatial-temporal gradient vectors. Presented 3D gradient histogram descriptor is able to detect and measure the timing characteristics of the fast and subtle changes of the facial skin surface. This method is specifically designed for analysis of videos recorded using a hi-speed 200 fps camera. Final classification of micro expressions is done by using a k-mean classifier and a voting procedure. The Facial Action Coding System was utilized to annotate the appearance and dynamics of the expressions in our new hi-speed micro-expressions video database. The efficiency of the proposed approach was validated using our new hi-speed video database.