1-4hit |
Hajime MIGITA Yuki NAKAGOSHI Patrick FINNERTY Chikara OHTA Makoto OKUHARA
To enhance fuel efficiency and lower manufacturing and maintenance costs, in-vehicle wireless networks can facilitate the weight reduction of vehicle wire harnesses. In this paper, we utilize the Impulse Radio-Ultra Wideband (IR-UWB) of IEEE 802.15.4a/z for in-vehicle wireless networks because of its excellent signal penetration and robustness in multipath environments. Since clear channel assessment is optional in this standard, we employ polling control as a multiple access control to prevent interference within the system. Therein, the preamble overhead is large in IR-UWB of IEEE 802.15.4a/z. Hence, aggregating as much sensor data as possible within each frame is more efficient. In this paper, we assume that reading out data from sensors and sending data to actuators is periodical and that their respective phases can be adjusted. Therefore, this paper proposes an integer linear programming-based scheduling algorithm that minimizes the number of transmitted frames by adjusting the read and write phases. Furthermore, we provide a heuristic algorithm that computes a sub-optimal but acceptable solution in a shorter time. Experimental validation shows that the data aggregation of the proposed algorithms is robust against interference.
Shan DING Gang ZENG Ryo KURACHI Ruifeng HUANG
As a next-generation CAN (Controller Area Network), CAN FD (CAN with flexible data rate) has attracted much attention recently. However, how to use the improved bus bandwidth efficiently in CAN FD is still an issue. Contrasting with existing methods using greedy approximate algorithms, this paper proposes a genetic algorithm for CAN FD frame packing. It tries to minimize the bandwidth utilization by considering the different periods of signals when packing them in the same frame. Moreover, it also checks the schedulability of packed frames to guarantee the real-time constraints of each frame and proposed a merging algorithm to improve the schedulability for signal set with high bus load. Experimental results validate that the proposed algorithm can achieve significantly less bandwidth utilization and improved schedulability than existing methods for a given set of signals.
Eun Kyoung PAIK Hosik CHO Thierry ERNST Yanghee CHOI
Various demands for next generation networks can be condensed into always-best-connected, ubiquitous, mobile, all-IP, application-aware, and converged networks. Vehicles have also come to be ubiquitous computing platforms associated with mobile communication functions. IPv6 has been introduced for all-IP ubiquitous communications. This paper proposes application-aware resource management for in-vehicle IPv6 networks, which are adaptive to different hardware configurations. We focus on power and bandwidth, since their management is critical for mobile communications. To manage these two critical resources, we identify the mobility characteristics and hardware configurations of in-vehicle networks. Based on these characteristics, we propose vehicle-aware power saving schemes. Our main idea for power saving is to dynamically adjust the mobile router (MR) advertisement interval and binding update lifetime. In addition, depending on the hardware configuration of the wireless environment, we propose two adaptive bandwidth management schemes using multihoming, which we refer to as best-connected MR selection based on location and high-data-rate MR selection based on priority. We evaluate the performance of our bandwidth management schemes by performing simulations, and that of our power saving schemes by mathematical analysis. Based on the results, it was found that the performance of each software scheme depends on the hardware configuration, so that an application-aware adaptive scheme is needed to optimize resource consumption.
Takashi KIMURA Koichi MURAKAMI
A communication LSI Set for Automotive Body control systems such as power windows, power seats, and power doors based on an in-vehicle network have been developed. The main function of the LSI is to achieve an original automotive communication protocol. The LSI set makes it possible to build a new kind of automotive control system, and reduces the number of wiring harnesses and weight below those of the conventional automotive body electronics. The communications transmitters and receivers have been integrated on-chip, so the LSI needs several external discrete components such as resistors, capacitors, and diodes. This communications LSI offers the advantages of small size and high reliability of the electronic control unit based on an in-vehicle network.