1-5hit |
Keiichiro INAGAKI Takayuki KANNON Yoshimi KAMIYAMA Shiro USUI
The eyes are continuously fluctuating during fixation. These fluctuations are called fixational eye movements. Fixational eye movements consist of tremors, microsaccades, and ocular drifts. Fixational eye movements aid our vision by shaping spatial-temporal characteristics. Here, it is known that photoreceptors, the first input layer of the retinal network, have a spatially non-uniform cell alignment called the cone mosaic. The roles of fixational eye movements are being gradually uncovered; however, the effects of the cone mosaic are not considered. Here we constructed a large-scale visual system model to explore the effect of the cone mosaic on the visual signal processing associated with fixational eye movements. The visual system model consisted of a brainstem, eye optics, and photoreceptors. In the simulation, we focused on the roles of fixational eye movements on signal processing with sparse sampling by photoreceptors given their spatially non-uniform mosaic. To analyze quantitatively the effect of fixational eye movements, the capacity of information processing in the simulated photoreceptor responses was evaluated by information rate. We confirmed that the information rate by sparse sampling due to the cone mosaic was increased with fixational eye movements. We also confirmed that the increase of the information rate was derived from the increase of the responses for the edges of objects. These results suggest that visual information is already enhanced at the level of the photoreceptors by fixational eye movements.
Ran SUN Hiromasa HABUCHI Yusuke KOZAWA
For high transmission efficiency, good modulation schemes are expected. This paper focuses on the enhancement of the modulation scheme of free space optical turbo coded system. A free space optical turbo coded system using a new signaling scheme called hybrid PPM-OOK signaling (HPOS) is proposed and investigated. The theoretical formula of the bit error rate of the uncoded HPOS system is derived. The effective information rate performances (i.e. channel capacity) of the proposed HPOS turbo coded system are evaluated through computer simulation in free space optical channel, with weak, moderate, strong scintillation. The performance of the proposed HPOS turbo coded system is compared with those of the conventional OOK (On-Off Keying) turbo coded system and BPPM (Binary Pulse Position Modulation) turbo coded system. As results, the proposed HPOS turbo coded system shows the same tolerance capability to background noise and atmospheric turbulence as the conventional BPPM turbo coded system, and it has 1.5 times larger capacity.
Bing HUI Manar MOHAISEN KyungHi CHANG
Tomlinson-Harashima precoding (THP) is considered to be a prominent precoding scheme due to its ability to efficiently cancel out the known interference at the transmitter side. Therefore, the information rates achieved by THP are superior to those achieved by conventional linear precoding schemes. In this paper, new lower bounds on the achievable information rates for the regularized THP scheme are derived. Analytical results show that the lower bounds derived in this paper are tighter than the original lower bounds particularly for the low SNR range, while all lower bounds converge to as SNR ∞.
Todorka ALEXANDROVA Hiroyoshi MORITA
Constructing ideal (t,n) threshold secret sharing schemes leads to some limitations on the maximum number of users, that are able to join the secret sharing scheme. We aim to remove these limitations by reducing the information rate of the constructed threshold secret sharing schemes. In this paper we propose recursive construction algorithms of (t,n) threshold secret sharing schemes, based on the generalized vector space construction. Using these algorithms we are able to construct a (t,n) threshold secret sharing scheme for any arbitrary n.
Slepian, Wolf and Wyner proved famous source coding theorems for correlated i.i.d. sources. On the other hand recently Han and Verdú have shown the source and channel coding theorems on general sources and channels whose statistics can be arbitrary, that is, no assumption such as stationarity or ergodicity is imposed. We prove source coding theorems on correlated general sources by using the method which Han and Verdú developed to prove their theorems. Also, through an example, we show some new results which are essentially different from those already obtained for the i.i.d. source cases.