The search functionality is under construction.

Keyword Search Result

[Keyword] integrated circuit design(4hit)

1-4hit
  • An Analytical Model of Charge Pump DC-DC Voltage Multiplier Using Diodes

    Toru TANZAWA  

     
    PAPER-Circuit Theory

      Vol:
    E100-A No:5
      Page(s):
    1137-1144

    An output voltage-current equation of charge pump DC-DC voltage multiplier using diodes is provided to cover wide clock frequency and output current ranges for designing energy harvester operating at a near-threshold voltage or in sub-threshold region. Equivalent circuits in slow and fast switching limits are extracted. The effective threshold voltage of the diode in slow switching limit is also derived as a function of electrical characteristics of the diodes, such as the saturation current and voltage slope parameter, and design parameters such as the number of stages, capacitance per stage, parasitic capacitance at the top plate of the main boosting capacitor, and the clock frequency. The model is verified compared with SPICE simulation.

  • IM3 Cancellation Method Using Current Feedback Suitable for a Multi-Stage RFIC Amplifier

    Toshifumi NAKATANI  Koichi OGAWA  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1209-1221

    A new method of cancellation of IM3 using current feedback has been proposed for a multi-stage RFIC amplifier. In order to cancel the IM3 present in an output signal of the amplifier, the IIP3 level and IM3 phase of the amplifier are adjusted by means of feedback circuit techniques, so that the target specification is satisfied. By estimating the IIP3 level and IM3 phase variations for two states in situations with and without feedback possessing linear factors, the parameters of a feedback circuit can be calculated. To confirm the validity of the method, we have investigated two approaches; one including an analytical approach to designing a two-stage feedback amplifier, achieving an IIP3 level improvement of 14.8 dB. The other method involves the fabrication of single-stage amplifiers with and without feedback, operating at 850 MHz, both of which were designed as an integrated circuit using a 0.18 µm SiGe BiCMOS process. The fabricated IC's were tested using a load-pull measurement system, and a good agreement between the estimated and measured IIP3 level and IM3 phase variations has been achieved. Further studies show that the error in these variations, as estimated by the method, has been found to be less than 1.5 dB and 15 degrees, respectively, when the load admittance at 1701 MHz was greater than 1/50 S.

  • An Improvement of Network-Flow Based Multi-Way Circuit Partitioning Algorithm

    Kengo R. AZEGAMI  Masato INAGI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E85-A No:3
      Page(s):
    655-663

    In this paper, we propose an improved network-flow based multi-way circuit partitioning algorithm whose objective is to minimize the number of sub-circuits. It iteratively extracts a size-maximal feasible sub-circuit one at a time. In our approach, two devices are applied. One is in the use of an exact min-cut graph, and the other is in the idea of keeping the number of I/O pins of the residual circuit as small as possible after one-time extraction. We implemented our algorithm in C for experiments, and tested it with several industrial cases and MCNC benchmarks. Compared to the known approach, we observed more than 10% reduction in average of the sub-circuit number.

  • An Efficient Algorithm to Extract an Optimal Sub-Circuit by the Minimum Cut

    Kengo R. AZEGAMI  Atsushi TAKAHASHI  Yoji KAJITANI  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E84-A No:5
      Page(s):
    1301-1308

    We improve the algorithm to obtain the min-cut graph of a hyper-graph and show an application to the sub-network extraction problem. The min-cut graph is a directed acyclic graph whose directed cuts correspond one-to-one to the min-cuts of the hyper-graph. While the known approach trades the exactness of the min-cut graph for some speed improvement, our proposed algorithm gives an exact one without substantial computation overhead. By using the exact min-cut graph, an exhaustive algorithm finds an optimal sub-circuit that is extracted by a min-cut from the circuit. By experiments with the industrial data, the proposing method showed a performance enough for practical use.