1-2hit |
Li HE Jingxuan ZHAO Jianyong DUAN Hao WANG Xin LI
In Natural Language Understanding, intent detection and slot filling have been widely used to understand user queries. However, current methods tend to rely on single words and sentences to understand complex semantic concepts, and can only consider local information within the sentence. Therefore, they usually cannot capture long-distance dependencies well and are prone to problems where complex intentions in sentences are difficult to recognize. In order to solve the problem of long-distance dependency of the model, this paper uses ConceptNet as an external knowledge source and introduces its extensive semantic information into the multi-intent detection and slot filling model. Specifically, for a certain sentence, based on confidence scores and semantic relationships, the most relevant conceptual knowledge is selected to equip the sentence, and a concept context map with rich information is constructed. Then, the multi-head graph attention mechanism is used to strengthen context correlation and improve the semantic understanding ability of the model. The experimental results indicate that the model has significantly improved performance compared to other models on the MixATIS and MixSNIPS multi-intent datasets.
Zhen GUO Yujie ZHANG Chen SU Jinan XU Hitoshi ISAHARA
Recent work on joint word segmentation, POS (Part Of Speech) tagging, and dependency parsing in Chinese has two key problems: the first is that word segmentation based on character and dependency parsing based on word were not combined well in the transition-based framework, and the second is that the joint model suffers from the insufficiency of annotated corpus. In order to resolve the first problem, we propose to transform the traditional word-based dependency tree into character-based dependency tree by using the internal structure of words and then propose a novel character-level joint model for the three tasks. In order to resolve the second problem, we propose a novel semi-supervised joint model for exploiting n-gram feature and dependency subtree feature from partially-annotated corpus. Experimental results on the Chinese Treebank show that our joint model achieved 98.31%, 94.84% and 81.71% for Chinese word segmentation, POS tagging, and dependency parsing, respectively. Our model outperforms the pipeline model of the three tasks by 0.92%, 1.77% and 3.95%, respectively. Particularly, the F1 value of word segmentation and POS tagging achieved the best result compared with those reported until now.