The search functionality is under construction.

Keyword Search Result

[Keyword] l1-norm minimization(3hit)

1-3hit
  • New Restricted Isometry Condition Using Null Space Constant for Compressed Sensing

    Haiyang ZOU  Wengang ZHAO  

     
    PAPER-Information Theory

      Pubricized:
    2022/06/20
      Vol:
    E105-A No:12
      Page(s):
    1591-1603

    It has been widely recognized that in compressed sensing, many restricted isometry property (RIP) conditions can be easily obtained by using the null space property (NSP) with its null space constant (NSC) 0<θ≤1 to construct a contradicted method for sparse signal recovery. However, the traditional NSP with θ=1 will lead to conservative RIP conditions. In this paper, we extend the NSP with 0<θ<1 to a scale NSP, which uses a factor τ to scale down all vectors belonged to the Null space of a sensing matrix. Following the popular proof procedure and using the scale NSP, we establish more relaxed RIP conditions with the scale factor τ, which guarantee the bounded approximation recovery of all sparse signals in the bounded noisy through the constrained l1 minimization. An application verifies the advantages of the scale factor in the number of measurements.

  • Ridge-Adding Homotopy Approach for l1-norm Minimization Problems

    Haoran LI  Binyu WANG  Jisheng DAI  Tianhong PAN  

     
    PAPER-Artificial Intelligence, Data Mining

      Pubricized:
    2020/03/10
      Vol:
    E103-D No:6
      Page(s):
    1380-1387

    Homotopy algorithm provides a very powerful approach to select the best regularization term for the l1-norm minimization problem, but it is lack of provision for handling singularities. The singularity problem might be frequently encountered in practical implementations if the measurement matrix contains duplicate columns, approximate columns or columns with linear dependent in kernel space. The existing method for handling Homotopy singularities introduces a high-dimensional random ridge term into the measurement matrix, which has at least two shortcomings: 1) it is very difficult to choose a proper ridge term that applies to several different measurement matrices; and 2) the high-dimensional ridge term may accumulatively degrade the recovery performance for large-scale applications. To get around these shortcomings, a modified ridge-adding method is proposed to deal with the singularity problem, which introduces a low-dimensional random ridge vector into the l1-norm minimization problem directly. Our method provides a much simpler implementation, and it can alleviate the degradation caused by the ridge term because the dimension of ridge term in the proposed method is much smaller than the original one. Moreover, the proposed method can be further extended to handle the SVMpath initialization singularities. Theoretical analysis and experimental results validate the performance of the proposed method.

  • High-Quality Recovery of Non-Sparse Signals from Compressed Sensing — Beyond l1 Norm Minimization —

    Akira HIRABAYASHI  Norihito INAMURO  Aiko NISHIYAMA  Kazushi MIMURA  

     
    PAPER

      Vol:
    E98-A No:9
      Page(s):
    1880-1887

    We propose a novel algorithm for the recovery of non-sparse, but compressible signals from linear undersampled measurements. The algorithm proposed in this paper consists of two steps. The first step recovers the signal by the l1-norm minimization. Then, the second step decomposes the l1 reconstruction into major and minor components. By using the major components, measurements for the minor components of the target signal are estimated. The minor components are further estimated using the estimated measurements exploiting a maximum a posterior (MAP) estimation, which leads to a ridge regression with the regularization parameter determined using the error bound for the estimated measurements. After a slight modification to the major components, the final estimate is obtained by combining the two estimates. Computational cost of the proposed algorithm is mostly the same as the l1-nom minimization. Simulation results for one-dimensional computer generated signals show that the proposed algorithm gives 11.8% better results on average than the l1-norm minimization and the lasso estimator. Simulations using standard images also show that the proposed algorithm outperforms those conventional methods.