1-5hit |
We introduce an adaptive subchannel, bit, and power allocation (ASBPA) algorithm to maximize the bandwidth efficiency of the mobile communication system that use orthogonal frequency division multiplexing (OFDM). We propose a suboptimal rate adaptive ASBPA algorithm that guarantees fairness in resource allocation and overcomes inherent co-channel interference (CCI) in the cellular system. Furthermore, we evaluate the maximum possible bandwidth efficiency of the cellular OFDM system achieved by the ASBPA algorithm which is practical to implement. Our simulation results show that the proposed algorithm outperforms the existing ones and achieves the cellular bandwidth efficiency of up to 5 b/s/Hz/cell. We also investigate some of the conditions that govern the bandwidth efficiency of the cellular OFDM system using the proposed ASBPA algorithm.
Yoshitaka HARA Yunjian JIA Toshihisa NABETANI Shinsuke HARA
This paper presents time slot assignment algorithms applicable to uplink of space division multiple access (SDMA)/time division multiple access (TDMA) systems with adaptive antennas. In the time slot assignment process for a new terminal in a cell, we consider not only the signal quality of the new terminal but also that of active terminals in the same cell. Intra-cell hand over is performed for an active terminal when its signal quality deteriorates. We evaluate the blocking and forced termination probabilities for pure TDMA systems, sectorized systems, and SDMA/TDMA systems in cellular environments by computer simulations. The simulation results show that the SDMA/TDMA systems have much better performance than the pure TDMA and sectorized systems.
This paper proposes a phase-rotating phase-shift keying (PSK) modulation and shows that its narrow-band version is suitable for Viterbi equalization. The proposed PSK has the following features: 1) a spectrum shaping of the transmit/receive filters does not need to be restricted to the Nyquist criterion; 2) the transmitted data sequence is rotated for every symbol in order to reduce noise-correlation at the receiver. First, this paper discusses a performance degradation of bit error rate of Viterbi equalizers in the presence of the sampling timing offset or under time-dispersive frequency selective fading. Next, computer simulation confirms that π/2-shifted binary PSK with narrow-band spectrum shaping filter, which includes offset QPSK for its special case, solves the above mentioned performance degradation, keeping good spectrum efficiency equal to M-ary PSK.
Eimatsu MORIYAMA Yukiyoshi KAMIO Kiyoshi HAMAGUCHI
This paper gives laboratory as well as the results of field experiment and describes the implementation of a system developed to evaluate and demonstrate multimedia multimode time division multiple access (MTDMA). The equipment has been developed with the radio transmission technology for future public land mobile telecommunication systems (FPLMTS/IMT-2000) in mind. To meet FPLMTS/IMT-2000 requirements the system employs the following techniques: a hybrid multiplex modulation system consisting of quadrature phase shift keying (QPSK) and 16-ary quadrature amplitude modulation (16QAM), a high data transmission bit rate of 2 Mbit/sec for QPSK, 4 Mbit/sec for 16QAM, and diversity combining and adaptive equalization technique. For the diversity adaptive equalization technique, we used a decision feedback equalizer (DFE) consisting of one feedback (FB) transversal filter and two feed-forward transversal (FF) filters. The output signals from two branches of space diversity reception antennas are then fed to the two FF filters of the DFE. For middle-speed mobile radio communication for a micro-cellular pedestrian environment, a QPSK modulation system is selected to obtain wide coverage, while for a pico-cellular indoor office environment, the delay spread is small, and a 16QAM modulation system is selected to achieve a high bit rate. The results given here of laboratory and field experiments show the technical feasibility of MTDMA for future public land mobile telecommunication systems.
Masanori HAMAMURA Shin'ichi TACHIKAWA
In this paper, we describe effects of oddcorrelation functions and band-limitation filters for direct-wave reception systems using broadband spread-spectrum (B-SS) techniques. The receiver of this system is synchronized to the direct-wave. First, the effects of odd-correlation functions are investigated by using M-sequences and random sequences. The effects of even-correlation functions for those sequences can be easily obtained by using results of effects of odd-correlation functions for random sequences. Here we derive a novel function of odd-correlation variance for M-sequence, which is obtained theoretically. Consequently, we show the advantage of M-sequence which is used as spreading sequence. As a reason, in the odd-correlation function of M-sequence, small values are taken near the synchronous phase where harmful scattered-waves exist, strongly. Next, the effects of both odd-correlation function and band-limitation filter are studied by using several kinds of filters. Here we discuss the difference of characteristics in case that despreading sequence of bandlimited pulse or that of rectangular pulse is used in the correlator of the receiver. The technique despreading by rectangular pulse can be achieved a high speed signal processing and equipment miniaturizing because of utilization of switching circuit. We show the advantage of despreading sequence of rectangular pulse, when the limitation bandwidth of transmitting signal takes a small value. Because the characteristics of the correlation function between transmitting sequence of bandlimited pulse and despreading sequence of rectangular pulse can be kept better than that between the transmitting sequence and despreading sequence of bandlimited pulse. As these results, in severe bandlimited direct-wave reception systems using B-SS techniques, M-sequence of rectangular pulse as despreading sequence is most suitable.