1-1hit |
Akinobu SHIMIZU Takuya NARIHIRA Hidefumi KOBATAKE Daisuke FURUKAWA Shigeru NAWANO Kenji SHINOZAKI
This paper presents an ensemble learning algorithm for liver tumour segmentation from a CT volume in the form of U-Boost and extends the loss functions to improve performance. Five segmentation algorithms trained by the ensemble learning algorithm with different loss functions are compared in terms of error rate and Jaccard Index between the extracted regions and true ones.